Bacterial lectin BambL acts as a B cell superantigen
Tóm tắt
B cell superantigens crosslink conserved domains of B cell receptors (BCRs) and cause dysregulated, polyclonal B cell activation irrespective of normal BCR-antigen complementarity. The cells typically succumb to activation-induced cell death, which can impede the adaptive immune response and favor infection. In the present study, we demonstrate that the fucose-binding lectin of Burkholderia ambifaria, BambL, bears functional resemblance to B cell superantigens. By engaging surface glycans, the bacterial lectin activated human peripheral blood B cells, which manifested in the surface expression of CD69, CD54 and CD86 but became increasingly cytotoxic at higher concentrations. The effects were sensitive to BCR pathway inhibitors and excess fucose, which corroborates a glycan-driven mode of action. Interactome analyses in a model cell line suggest BambL binds directly to glycans of the BCR and regulatory coreceptors. In vitro, BambL triggered BCR signaling and induced CD19 internalization and degradation. Owing to the lectin’s six binding sites, we propose a BCR activation model in which BambL functions as a clustering hub for receptor glycans, modulates normal BCR regulation, and induces cell death through exhaustive activation.
Tài liệu tham khảo
Silverman GJ, Goodyear CS (2006) Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6(6):465–475. https://doi.org/10.1038/nri1853
Silverman GJ, Goodyear CS (2002) A model B-cell superantigen and the immunobiology of B lymphocytes. Clin Immunol 102(2):117–134. https://doi.org/10.1006/clim.2001.5143
Goodyear CS, Silverman GJ (2005) B cell superantigens: a microbe’s answer to innate-like B cells and natural antibodies. Springer Semin Immunopathol 26(4):463–484. https://doi.org/10.1007/s00281-004-0190-2
Domiati-Saad R, Attrep JF, Brezinschek HP, Cherrie AH, Karp DR, Lipsky PE (1996) Staphylococcal enterotoxin D functions as a human B cell superantigen by rescuing VH4-expressing B cells from apoptosis. J Immunol 156(10):3608–3620
Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, Taussig MJ, Sutton BJ, Gore MG, Charbonnier J-B (2001) Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure 9(8):679–687. https://doi.org/10.1016/S0969-2126(01)00630-X
Wingren AG, Hadzic R, Forsgren A, Riesbeck K (2002) The Novel IgD binding protein from Moraxella catarrhalis induces Human B lymphocyte activation and Ig Secretion in the presence of Th2 cytokines. J Immunol 168(11):5582–5588. https://doi.org/10.4049/jimmunol.168.11.5582
Donati D, Zhang LP, Chen Q, Chêne A, Flick K, Nyström M, Wahlgren M, Bejarano MT (2004) Identification of a Polyclonal B-Cell activator in Plasmodium falciparum. Infect Immun 72(9):5412–5418. https://doi.org/10.1128/iai.72.9.5412-5418.2004
Lorenzo D, Duarte A, Mundiñano J, Berguer P, Nepomnaschy I, Piazzon I (2016) A B-Cell superantigen induces the apoptosis of murine and human malignant B cells. PLoS ONE 11(9):e0162456–e0162456. https://doi.org/10.1371/journal.pone.0162456
Sadana P, Geyer R, Pezoldt J, Helmsing S, Huehn J, Hust M, Dersch P, Scrima A (2018) The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. J Biol Chem 293(22):8672–8690. https://doi.org/10.1074/jbc.RA117.001068
Sewid AH, Hassan MN, Ammar AM, Bemis DA, Kania SA (2019) Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM, IgG Fc and Fab. PLoS ONE 14(7):e0219817. https://doi.org/10.1371/journal.pone.0219817
Butler JE, Wertz N, Weber P, Lager KM (2008) Porcine reproductive and respiratory syndrome virus subverts repertoire development by proliferation of germline-encoded B cells of all isotypes bearing hydrophobic heavy chain CDR3. J Immunol 180(4):2347–2356. https://doi.org/10.4049/jimmunol.180.4.2347
Verkoczy L, Moody MA, Holl TM, Bouton-Verville H, Scearce RM, Hutchinson J, Alam SM, Kelsoe G, Haynes BF (2009) Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region. PLoS ONE 4(10):e7215–e7215. https://doi.org/10.1371/journal.pone.0007215
Steininger C, Widhopf GF 2nd, Ghia EM, Morello CS, Vanura K, Sanders R, Spector D, Guiney D, Jäger U, Kipps TJ (2012) Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen. Blood 119(10):2293–2301. https://doi.org/10.1182/blood-2011-08-374058
Gunter SM, Jones KM, Zhan B, Essigmann HT, Murray KO, Garcia MN, Gorchakov R, Bottazzi ME, Hotez PJ, Brown EL (2016) Identification and characterization of the Trypanosoma cruzi B-cell Superantigen Tc24. Am J Trop Med Hyg 94(1):114–121. https://doi.org/10.4269/ajtmh.15-0438
Goodyear CS, Silverman GJ (2003) Death by a B Cell Superantigen: In vivo VH-targeted apoptotic Supraclonal B cell deletion by a staphylococcal toxin. J Exp Med 197(9):1125–1139
Goodyear CS, Corr M, Sugiyama F, Boyle DL, Silverman GJ (2007) Cutting edge: Bim is required for superantigen-mediated B Cell death. J Immunol 178(5):2636–2640. https://doi.org/10.4049/jimmunol.178.5.2636
Romagnani S, Giudizi MG, del Prete G, Maggi E, Biagiotti R, Almerigogna F, Ricci M (1982) Demonstration on protein A of two distinct immunoglobulin-binding sites and their role in the mitogenic activity of Staphylococcus aureus Cowan I on human B cells. J Immunol 129(2):596–602
Das C, Langone JJ (1989) Dissociation between murine spleen cell mitogenic activity of enterotoxin contaminants and anti-tumor activity of staphylococcal protein A. J Immunol 142(8):2943–2948
Kristiansen SV, Pascual V, Lipsky PE (1994) Staphylococcal protein A induces biased production of Ig by VH3-expressing B lymphocytes. J Immunol 153(7):2974–2982
Kozlowski LM, Soulika AM, Silverman GJ, Lambris JD, Levinson AI (1996) Complement activation by a B cell superantigen. J Immunol 157(3):1200–1206
Jendholm J, Samuelsson M, Cardell L-O, Forsgren A, Riesbeck K (2008) Moraxella catarrhalis-dependent tonsillar B cell activation does not lead to apoptosis but to vigorous proliferation resulting in nonspecific IgM production. J Leukocyte Biol 83(6):1370–1378. https://doi.org/10.1189/jlb.1107788
Ulloa-Morales AJ, Goodyear CS, Silverman GJ (2018) Essential domain-dependent roles within soluble IgG for in vivo superantigen properties of Staphylococcal Protein A: resolving the B-Cell Superantigen paradox. Front Immunol. https://doi.org/10.3389/fimmu.2018.02011
Schneider D, Dühren-von Minden M, Alkhatib A, Setz C, van Bergen CAM, Benkißer-Petersen M, Wilhelm I, Villringer S, Krysov S, Packham G, Zirlik K, Römer W, Buske C, Stevenson FK, Veelken H, Jumaa H (2015) Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 125(21):3287–3296. https://doi.org/10.1182/blood-2014-11-609404
Villar RF, Patel J, Weaver GC, Kanekiyo M, Wheatley AK, Yassine HM, Costello CE, Chandler KB, McTamney PM, Nabel GJ, McDermott AB, Mascola JR, Carr SA, Lingwood D (2016) Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Sci Rep 6:36298. https://doi.org/10.1038/srep36298
Wilhelm I, Levit-Zerdoun E, Jakob J, Villringer S, Frensch M, Übelhart R, Landi A, Müller P, Imberty A, Thuenauer R, Claudinon J, Jumaa H, Reth M, Eibel H, Hobeika E, Römer W (2019) Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Sci Signal 12(571):eaao7194. https://doi.org/10.1126/scisignal.aao7194
Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11):53R-62R. https://doi.org/10.1093/glycob/cwh122
Nizet V, Varki A, Aebi M (2017) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)
Sharon N (1996) Carbohydrate-lectin interactions in infectious disease. In: Kahane I, Ofek I (eds) Toward anti-adhesion therapy for microbial diseases. Springer, US, Boston, MA, pp 1–8
Imberty A, Mitchell EP, Wimmerova M (2005) Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr Opin Struct Biol 15(5):525–534. https://doi.org/10.1016/j.sbi.2005.08.003
Eierhoff T, Bastian B, Thuenauer R, Madl J, Audfray A, Aigal S, Juillot S, Rydell GE, Müller S, de Bentzmann S, Imberty A, Fleck C, Römer W (2014) A lipid zipper triggers bacterial invasion. Proc Natl Acad Sci USA 111(35):12895–12900. https://doi.org/10.1073/pnas.1402637111
Aigal S, Claudinon J, Römer W (1853) (2015) Plasma membrane reorganization: a glycolipid gateway for microbes. Biochim Biophys Acta 4:858–871. https://doi.org/10.1016/j.bbamcr.2014.11.014
Thuenauer R, Landi A, Trefzer A, Altmann S, Wehrum S, Eierhoff T, Diedrich B, Dengjel J, Nyström A, Imberty A, Römer W (2020) The Pseudomonas aeruginosa lectin LecB causes integrin internalization and inhibits epithelial wound healing. MBio. https://doi.org/10.1128/mBio.03260-19
Landi A, Mari M, Kleiser S, Wolf T, Gretzmeier C, Wilhelm I, Kiritsi D, Thünauer R, Geiger R, Nyström A, Reggiori F, Claudinon J, Römer W (2019) Pseudomonas aeruginosa lectin LecB impairs keratinocyte fitness by abrogating growth factor signalling. Life Sci Alliance 2(6):e201900422. https://doi.org/10.26508/lsa.201900422
Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, Madl J, Eierhoff T, Römer W (2016) Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta 1863(6):1106–1118. https://doi.org/10.1016/j.bbamcr.2016.02.004
Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77(5):2065–2075. https://doi.org/10.1128/iai.01204-08
Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104(6):1539–1551. https://doi.org/10.1111/j.1365-2672.2007.03706.x
Rhim AD, Stoykova LI, Trindade AJ, Glick MC, Scanlin TF (2004) Altered terminal glycosylation and the pathophysiology of CF lung disease. J Cyst Fibros 3:95–96. https://doi.org/10.1016/j.jcf.2004.05.021
LiPuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23(2):299–323. https://doi.org/10.1128/cmr.00068-09
Reik R, Spilker T, Lipuma JJ (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43(6):2926–2928. https://doi.org/10.1128/JCM.43.6.2926-2928.2005
Notova S, Bonnardel F, Lisacek F, Varrot A, Imberty A (2020) Structure and engineering of tandem repeat lectins. Curr Opin Struct Biol 62:39–47. https://doi.org/10.1016/j.sbi.2019.11.006
Bonnardel F, Kumar A, Wimmerova M, Lahmann M, Perez S, Varrot A, Lisacek F, Imberty A (2019) Architecture and evolution of blade assembly in β-propeller lectins. Structure 27(5):764-775.e763. https://doi.org/10.1016/j.str.2019.02.002
Audfray A, Claudinon J, Abounit S, Ruvoën-Clouet N, Larson G, Smith DF, Wimmerová M, Le Pendu J, Römer W, Varrot A, Imberty A (2012) Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes. J Biol Chem 287(6):4335–4347. https://doi.org/10.1074/jbc.M111.314831
Thriene K, Grüning BA, Bornert O, Erxleben A, Leppert J, Athanasiou I, Weber E, Kiritsi D, Nyström A, Reinheckel T, Backofen R, Has C, Bruckner-Tuderman L, Dengjel J (2018) Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol Cell Proteomics 17(4):565–579. https://doi.org/10.1074/mcp.RA117.000437
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
DeLano WL The PyMOL Molecular Graphics System, Version 1.8.2.0. Schrödinger, LLC
Andrews LP, Yano H, Vignali DAA (2019) Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol 20(11):1425–1434. https://doi.org/10.1038/s41590-019-0512-0
Yeo J, Ko M, Lee D-H, Park Y, Jin H-S (2021) TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals. https://doi.org/10.3390/ph14030200
Rabinovich E, Bar-Nun S, Amitay R, Shachar I, Gur B, Taya M, Haimovich J (1993) Different assembly species of IgM are directed to distinct degradation sites along the secretory pathway. J Biol Chem 268(32):24145–24148
Haimovich J, Moshe NB, Raviv Y, Hollander N (2010) All oligosaccharide moieties of the μ chains in the pre-BCR are of the high-mannose type. Mol Immunol 48(1):351–355. https://doi.org/10.1016/j.molimm.2010.07.005
Kläsener K, Jellusova J, Andrieux G, Salzer U, Böhler C, Steiner SN, Albinus JB, Cavallari M, Süß B, Voll RE, Boerries M, Wollscheid B, Reth M (2021) CD20 as a gatekeeper of the resting stage of human B cells. Proc Natl Acad Sci USA 118(7):e2021342118. https://doi.org/10.1073/pnas.2021342118
Giovannone N, Liang J, Antonopoulos A, Geddes Sweeney J, King SL, Pochebit SM, Bhattacharyya N, Lee GS, Dell A, Widlund HR, Haslam SM, Dimitroff CJ (2018) Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun 9(1):3287. https://doi.org/10.1038/s41467-018-05770-9
Wu Y, Li Q, Chen X-Z (2007) Detecting protein–protein interactions by far western blotting. Nat Protoc 2(12):3278–3284. https://doi.org/10.1038/nprot.2007.459
Norris GE, Stillman TJ, Anderson BF, Baker EN (1994) The three-dimensional structure of PNGase F, a glycosyl asparaginase from Flavobacterium meningosepticum. Structure 2(11):1049–1059. https://doi.org/10.1016/S0969-2126(94)00108-1
Magrath IT, Freeman CB, Pizzo P, Gadek J, Jaffe E, Santaella M, Hammer C, Frank M, Reaman G, Novikovs L (1980) Characterization of Lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J Natl Cancer Inst 64(3):477–483. https://doi.org/10.1093/jnci/64.3.477
Benjamin D, Magrath IT, Maguire R, Janus C, Todd HD, Parsons RG (1982) Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt’s and non-Burkitt’s type. J Immunol 129(3):1336–1342
Anderson DR, Atkinson PH, Grimes WJ (1985) Major Carbohydrate structures at five glycosylation sites on murine IgM determined by high resolution 1H-NMR spectroscopy. Arch Biochem Biophys 243(2):605–618. https://doi.org/10.1016/0003-9861(85)90538-7
Brenckle R, Kornfeld R (1980) Structure of the oligosaccharides of mouse immunoglobulin M secreted by the MOPC 104E plasmacytoma. Arch Biochem Biophys 201(1):160–173. https://doi.org/10.1016/0003-9861(80)90499-3
Kumagai T, Palacios A, Casadevall A, García MJ, Toro C, Tiemeyer M, Prados-Rosales R (2019) Serum IgM glycosylation associated with tuberculosis infection in mice. mSphere. https://doi.org/10.1128/mSphere.00684-18
Wang F, Nakouzi A, Hogue Angeletti R, Casadevall A (2003) Site-specific characterization of the N-linked oligosaccharides of a murine immunoglobulin M by high-performance liquid chromatography/electrospray mass spectrometry. Anal Biochem 314(2):266–280. https://doi.org/10.1016/S0003-2697(02)00693-0
Arnold JN, Radcliffe CM, Wormald MR, Royle L, Harvey DJ, Crispin M, Dwek RA, Sim RB, Rudd PM (2004) The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with Mannan-Binding lectin. J Immunol 173(11):6831–6840. https://doi.org/10.4049/jimmunol.173.11.6831
Chandler KB, Mehta N, Leon DR, Suscovich TJ, Alter G, Costello CE (2019) Multi-isotype glycoproteomic characterization of serum antibody heavy chains reveals isotype- and subclass-specific N-glycosylation profiles. Mol Cell Proteomics 18(4):686–703. https://doi.org/10.1074/mcp.RA118.001185
Arnold JN, Wormald MR, Suter DM, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM, Sim RB (2005) Human serum IgM glycosylation: identification of glycoforms that can bind to Mannan-binding lectin. J Biol Chem 280(32):29080–29087. https://doi.org/10.1074/jbc.M504528200
Moh ESX, Lin C-H, Thaysen-Andersen M, Packer NH (2016) Site-specific N-Glycosylation of recombinant pentameric and hexameric human IgM. J Am Soc Mass Spectrom 27(7):1143–1155. https://doi.org/10.1021/jasms.8b05307
Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of Autoimmunity: a critical review. J Autoimmun 57:1–13. https://doi.org/10.1016/j.jaut.2014.12.002
Mattila Pieta K, Feest C, Depoil D, Treanor B, Montaner B, Otipoby Kevin L, Carter R, Justement Louis B, Bruckbauer A, Batista Facundo D (2013) The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38(3):461–474. https://doi.org/10.1016/j.immuni.2012.11.019
Kläsener K, Maity PC, Hobeika E, Yang J, Reth M (2014) B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. Elife 3:e02069. https://doi.org/10.7554/eLife.02069
Maity PC, Yang J, Klaesener K (1853) Reth M (2015) The nanoscale organization of the B lymphocyte membrane. Biochim Biophys Acta 4:830–840. https://doi.org/10.1016/j.bbamcr.2014.11.010
Treanor B, Batista FD (2010) Organisation and dynamics of antigen receptors: implications for lymphocyte signalling. Curr Opin Immunol 22(3):299–307. https://doi.org/10.1016/j.coi.2010.03.009
Pierce SK, Liu W (2010) The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol 10(11):767–777
Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MRE, Fraisier V, Florent J-C, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450(7170):670–675. https://doi.org/10.1038/nature05996
Rydell GE, Svensson L, Larson G, Johannes L, Römer W (2013) Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent α1,2-fucosylated glycosphingolipids. Biochim Biophys Acta 8:1840–1845. https://doi.org/10.1016/j.bbamem.2013.03.016
Ewers H, Römer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12(1):11–18. https://doi.org/10.1038/ncb1999
Arnaud J, Claudinon J, Tröndle K, Trovaslet M, Larson G, Thomas A, Varrot A, Römer W, Imberty A, Audfray A (2013) Reduction of lectin valency drastically changes glycolipid dynamics in membranes but not surface avidity. ACS Chem Biol 8(9):1918–1924. https://doi.org/10.1021/cb400254b
Arnaud J, Tröndle K, Claudinon J, Audfray A, Varrot A, Römer W, Imberty A (2014) Membrane deformation by neolectins with engineered glycolipid binding sites. Angew Chem Int Edit 53(35):9267–9270. https://doi.org/10.1002/anie.201404568
Fujimoto M, Poe JC, Hasegawa M, Tedder TF (2000) CD19 regulates intrinsic B lymphocyte signal transduction and activation through a novel mechanism of processive amplification. Immunol Res 22(2):281–298. https://doi.org/10.1385/IR:22:2-3:281
Clark EA, Giltiay NV (2018) CD22: a regulator of innate and adaptive B cell responses and autoimmunity. Front Immunol. https://doi.org/10.3389/fimmu.2018.02235
Han S, Collins BE, Bengtson P, Paulson JC (2005) Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat Chem Biol 1(2):93–97. https://doi.org/10.1038/nchembio713
Shrivastava P, Katagiri T, Ogimoto M, Mizuno K, Yakura H (2004) Dynamic regulation of Src-family kinases by CD45 in B cells. Blood 103(4):1425–1432. https://doi.org/10.1182/blood-2003-03-0716
Yanagi S, Sugawara H, Kurosaki M, Sabe H, Yamamura H, Kurosaki T (1996) CD45 modulates phosphorylation of both autophosphorylation and negative regulatory tyrosines of Lyn in B cells. J Biol Chem 271(48):30487–30492. https://doi.org/10.1074/jbc.271.48.30487
Klaus SJ, Sidorenko SP, Clark EA (1996) CD45 ligation induces programmed cell death in T and B lymphocytes. J Immunol 156(8):2743–2753
van der Merwe PA, Crocker PR, Vinson M, Barclay AN, Schauer R, Kelm S (1996) Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J Biol Chem 271(16):9273–9280. https://doi.org/10.1074/jbc.271.16.9273
Nath D, van der Merwe PA, Kelm S, Bradfield P, Crocker PR (1995) The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site: comparison with CD22. J Biol Chem 270(44):26184–26191. https://doi.org/10.1074/jbc.270.44.26184
Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181(4):1581–1586. https://doi.org/10.1084/jem.181.4.1581
Cao A, Alluqmani N, Buhari FHM, Wasim L, Smith LK, Quaile AT, Shannon M, Hakim Z, Furmli H, Owen DM, Savchenko A, Treanor B (2018) Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat Commun 9(1):3288. https://doi.org/10.1038/s41467-018-05771-8
Wasim L, Buhari FHM, Yoganathan M, Sicard T, Ereño-Orbea J, Julien J-P, Treanor B (2019) N-Linked glycosylation regulates CD22 organization and function. Front Immunol 10:699–699. https://doi.org/10.3389/fimmu.2019.00699
Shiow LR, Rosen DB, Brdičková N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440(7083):540–544. https://doi.org/10.1038/nature04606
Sheikh NA, Jones LA (2008) CD54 is a surrogate marker of antigen presenting cell activation. Cancer Immunol, Immunother 57(9):1381–1390. https://doi.org/10.1007/s00262-008-0474-9
Wülfing C, Sjaastad MD, Davis MM (1998) Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci USA 95(11):6302–6307. https://doi.org/10.1073/pnas.95.11.6302
Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN (2002) Distinct role of CD80 and CD86 in the regulation of the activation of B Cell and B cell lymphoma. J Biol Chem 277(10):7766–7775. https://doi.org/10.1074/jbc.M105902200
Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat J-F, Ellis J, Bonnefoy J-Y (1997) CD86 (B7–2) on Human B cells: a functional role in proliferation and selective differentiation into IgE- and IgG4-producing cells. J Biol Chem 272(25):15613–15619. https://doi.org/10.1074/jbc.272.25.15613
Acuto O, Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3(12):939–951. https://doi.org/10.1038/nri1248
Rott O, Charreire J, Cash E (1996) Influenza A virus hemagglutinin is a B cell-superstimulatory lectin. Med Microbiol Immunol 184(4):185–193. https://doi.org/10.1007/bf02456134
Schnitzler AC, Burke JM, Wetzler LM (2007) Induction of cell signaling events by the cholera toxin B subunit in antigen-presenting cells. Infect Immun 75(6):3150–3159. https://doi.org/10.1128/iai.00581-06
Dailey RH, Benner EJ (1968) Necrotizing pneumonicitis due to the pseudomonad “eugonic oxidizer–group I.” New Engl J Med 279(7):361–362. https://doi.org/10.1056/nejm196808152790706
Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104(2):206–210. https://doi.org/10.1016/s0022-3476(84)80993-2
Jin Y, Zhou JL, Zhou J, Hu MD, Zhang Q, Kong N, Ren HG, Liang L, Yue JJ (2020) Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct 15(1):14. https://doi.org/10.1186/s13062-020-0258-5
Shaban RZ, Sotomayor-Castillo C, Nahidi S, Li C, Macbeth D, Mitchell BG, Russo PL (2020) Global burden, point sources, and outbreak management of healthcare-associated Burkholderia cepacia infections: An integrative review. Infect Control Hosp Epidemiol 41(7):777–783. https://doi.org/10.1017/ice.2020.184
Podnecky N, Rhodes K, Schweizer H (2015) Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00305
Oie S, Kamiya A (1996) Microbial contamination of antiseptics and disinfectants. Am J Infect Control 24(5):389–395. https://doi.org/10.1016/S0196-6553(96)90027-9
Cont A, Rossy T, Al-Mayyah Z, Persat A (2020) Biofilms deform soft surfaces and disrupt epithelia. Elife 9:e56533. https://doi.org/10.7554/eLife.56533