Bacterial iron homeostasis

Oxford University Press (OUP) - Tập 27 Số 2-3 - Trang 215-237 - 2003
Simon C. Andrews1, Andrea K. Robinson1, Francisco Rodríguez‐Quiñones1
1School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1126/science.277.5326.653

Price, N.M. and Morel, F.M.M. (1998) Biological cycling of iron in the ocean. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. 1–36. Marcel Dekker, New York.

10.1006/abbi.1999.1518

Abdul-Tehrani H Hudson A.J Chang Y.S Timms A.R Hawkins C Williams J.M Harrison P.M Guest J.R Andrews S.C (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181, 1415–1428.

Rouf M.A (1964) Spectrochemical analysis of inorganic elements in bacteria. J. Bacteriol. 88, 1545–1549.

Braun, V., Hantke, K. and Köster, W. (1998) Bacterial iron transport: mechanisms, genetics, and regulation. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. 67–145. Marcel Dekker, New York.

10.1146/annurev.mi.48.100194.003523

10.1016/S0923-2508(01)01200-1

Winkelmann, G. (Ed.) (2001) Microbial Transport Systems. Wiley-VCH, Weinheim.

Byers, B.R. and Arceneaux, J.E.L. (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., Eds.), Vol. 35, pp. Marcel Dekker, 37–66.

10.1146/annurev.micro.54.1.881

Braun, V. (1985) The iron transport systems of Escherichia coli. In: The Enzymes of Biological Membranes (Martonosi, A.N., Ed.), pp. 617–652. Plenum Press, New York.

Winkelmann G (1991) Structural and sterochemical aspects of iron transport in fungi. Biotechnol. Adv. 8, 207–231.

10.1042/BST0300691

Drechsel, H. and Winkelmann, G. (1997) Iron chelation and siderophores. In: Transition Metals in Microbial Metabolism (Winkelmann, G. and Carrano, C.J., Eds.), pp 1–49. Harwood Academic, Amsterdam.

10.1046/j.1365-2958.2002.02885.x

10.1073/pnas.200318797

10.1038/4931

10.1126/science.282.5397.2215

10.1126/science.1067313

10.1128/JB.183.11.3476-3487.2001

10.1073/pnas.181353398

10.1093/nar/28.1.235

Silver, S. (1996) Transport of inorganic cations. In: Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt, F.C., Ed.), pp. 1091–1102. ASM Press, Washington, DC.

10.1111/j.1365-2958.1994.tb00457.x

Higgs P.I Myers P.S Postle K (1998) Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J. Bacteriol. 180, 6031–6038.

Postle K (1993) TonB protein and energy transduction between membranes. J. Bioenerg. Biomembr. 25, 591–601.

10.1073/pnas.96.19.10673

10.1046/j.1365-2958.1999.01546.x

10.1074/jbc.M011282200

10.1046/j.1365-2958.2002.02880.x

Reynolds P.R Mottur G.P Bradbeer C (1980) Transport of vitamin B12 in Escherichia coli. Some observations on the roles of the gene products of BtuC and TonB . J. Biol. Chem. 255, 4313–4319.

10.1099/00221287-138-3-597

10.1046/j.1365-2958.1999.01317.x

10.1046/j.1365-2958.1997.3331703.x

10.1074/jbc.M102778200

10.1046/j.1365-2958.2001.02683.x

10.1074/jbc.M109385200

10.1038/74048

10.1038/nsb1197-919

10.1046/j.1365-2958.1997.6592008.x

Rohrbach M.R Braun V Köster W (1995) Ferrichrome transport in Escherichia coli K-12: Altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J. Bacteriol. 177, 7186–7193.

Fontecave M Coves J Pierre J.L (1994) Ferric reductases or flavin reductases. BioMetals 7, 3–8.

Earhart, C.F. (1996) Uptake and metabolism of iron and molybdenum. In: Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd edn. (Neidhardt, F.C., Ed.), pp. 1075–1090. ASM Press, Washington, DC.

Heidinger S Braun V Pecarro V.L Raymond K.N (1983) Iron supply to Escherichia coli by synthetic analogs of enterochelin. J. Bacteriol. 153, 109–115.

10.1021/jm00188a002

10.1016/S1369-5274(00)00184-3

Patzer S.I Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli . J. Bacteriol. 181, 3307–3309.

10.1111/j.1574-6968.1993.tb06082.x

Tsolis R.M Baumler A.J Heffron F Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect. Immun. 64, 4549–4556.

10.1046/j.1365-2958.2000.01987.x

10.1016/S0003-9861(02)00012-7

Worst D.J Gerrits M.M Vandenbroucke G.C Kusters G (1988) Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J. Bacteriol. 180, 1473–1479.

Dancis A Klausner R.D Hinnebusch A.G Barriocanal J.G (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae . Mol. Cell. Biol. 10, 2294–2301.

Nyhus K.J Wilborn A.T Jacobson E.S (1997) Ferric iron reduction by Cryptococcus neoformans . Infect. Immun. 65, 434–438.

10.1038/17800

10.1126/science.1057206

10.1046/j.1365-2958.2000.01783.x

Zhou D.G Hardt W.D Galan J.E (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect. Immun. 67, 1974–1981.

10.1046/j.1365-2958.1999.01360.x

Hantke K (1997) Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium . J. Bacteriol. 179, 6201–6204.

Bullen J.J Rogers H.J Griffiths E (1978) Role of iron in bacterial infection. Curr. Top. Microbiol. Immunol. 80, 1–35.

Litwin C.M Calderwood S.B (1993) Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6, 137–149.

Calderwood S.B Mekalanos J.J (1987) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169, 4759–4764.

Williams P.H Warner P.J (1980) ColV-plasmid mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli . Infect. Immun. 29, 411–416.

Warner P.J Williams P.H Bindereif A Neilands J.B (1981) ColV plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli . Infect. Immun. 33, 723–730.

10.1111/j.1365-2958.1994.tb01320.x

10.1111/j.1365-2958.1988.tb00095.x

10.1111/j.1365-2958.1988.tb00029.x

Tsai J Dyer D.W Sparling P.F (1988) Loss of transferrin receptor activity in Neisseria meningitidis correlates with the inability to use transferrin as an iron source. Infect. Immun. 56, 3132–3138.

Blanton K.J Biswas G.D Tsai J Adams J Dyer D.W Davis S.M Koch G.G Sen P.K Sparling P.F (1990) Genetic evidence that Neisseria gonorrhoeae produces specific receptors for transferrin and lactoferrin. J. Bacteriol. 172, 5225–5235.

10.1016/0378-1119(93)90348-7

Anderson J.E Sparling P.F Cornelissen S.N (1994) Gonococcal transferrin-binding protein-2 facilitates but is not essential for transferrin utilization. J. Bacteriol. 176, 3162–3170.

Otto B.R Sparrius M Verweij-van Vught A.M.J.J MacLaren D.M (1990) Iron-regulated outer membrane protein of Bacteroides fragilis involved in heme uptake. Infect. Immun. 58, 3954–3958.

10.1046/j.1365-2958.2001.02231.x

10.1016/S0065-2911(08)60134-4

10.1107/S0907444997006811

10.1038/nsb0498-294

10.1038/71236

10.1074/jbc.272.6.3259

10.1074/jbc.M202094200

10.1146/annurev.bi.56.070187.001445

Touati D Jacques M Tardat B Bouchard L Despied S (1995) Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: Protective role of superoxide dismutase. J. Bacteriol. 177, 2305–2314.

10.1046/j.1365-2958.1996.493986.x

10.1099/00221287-144-9-2505

10.1016/S0014-5793(00)01939-6

10.1021/bi00363a023

10.1074/jbc.270.40.23268

10.1006/bbrc.1996.1856

10.1021/bi9600862

10.1046/j.1365-2958.2001.02509.x

Denoel P.A Crawford R.M Zygmunt M.S Tibor A Weynants V.E Godfroid F Hoover D.L Letesson J.J (1997) Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages. Infect. Immun. 65, 4337–4340.

Ma J.F Ochsner U.A Klotz M.G Nanayakkara V.K Howell M.L Johnson Z Posey J.E Vasil M.L Monaco J.J Hassett D.J (1999) Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa . J. Bacteriol. 181, 3730–3742.

10.1146/annurev.bi.64.070195.000525

10.1074/jbc.M203977200

Repine J.E Fox R.B Berger E.M (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcal iron to form hydroxyl radicals. J. Biol. Chem. 256, 7094–7096.

Maringanti S Imlay J (1999) An intracellular iron chelator pleitropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli . J. Bacteriol. 282, 3792–3802.

Keyer K Imlay J.A (1996) Superoxide accelerates DNA-damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA 193, 13635–13649.

Escolar L Pérez-Martín J De Lorenzo V (1999) Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181, 6223–6229.

Hantke, K. and Braun, V. (2000) The art of keeping low and high iron concentrations in balance. In: Bacterial Stress Responses (Storz, G. and Hengge-Aronis, R., Eds.), pp 275–288. ASM Press, Washington, DC.

10.1021/bi00247a016

10.1021/bi00391a039

10.1007/BF01908539

10.1021/bi9721344

10.1021/bi982788s

Lewin A.C Doughty P.A Flegg L Moore G.R Spiro S (2002) The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148, 2449–2456.

10.1007/BF00705650

10.1046/j.1365-2958.1999.01423.x

10.1074/jbc.M002839200

10.1016/0022-2836(88)90113-1

10.1073/pnas.91.25.11816

10.1006/jmbi.1998.2119

10.1016/S0022-2836(02)00849-5

10.1128/JB.184.21.5826-5832.2002

Zheng M Doan B Schneider T.D Storz G (1999) OxyR and SoxRS regulation of fur . J. Bacteriol. 181, 4639–4643.

Watnick P.I Eto T Takahashi H Calderwood S.B (1997) Purification of Vibrio cholerae Fur and estimation of intracellular abundance by antibody sandwich enzyme-linked immunoassay. J. Bacteriol. 179, 243–247.

10.1101/gad.6.12b.2646

10.1111/j.1432-1033.1988.tb14032.x

10.1006/jmbi.1994.1163

Park S.-J Gunsalus R.P (1995) Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: Role of the arcA, fnr, and soxR gene products. J. Bacteriol. 177, 6255–6262.

Vassinova N Kozyruv D (2000) A method for direct cloning of Fur-regulated genes: identification of seven new Fur-regulated loci in Escherichia coli . Microbiology 146, 3171–3182.

Touati D (1988) Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. J. Bacteriol. 170, 2511–2520.

10.1007/BF00337769

Foster J.W Hall H.K (1992) Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J. Bacteriol. 174, 4317–4323.

Hantke K (2002) Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated FhuF protein. J. Mol. Microb. Biotechnol. 4, 217–222.

10.1099/00221287-140-10-2531

10.1073/pnas.032066599

10.1111/j.1574-6968.1997.tb12754.x

10.1111/j.1365-2958.1995.tb02261.x

10.1111/j.1365-2958.1991.tb01968.x

10.1046/j.1365-2958.2001.02696.x

10.1128/JB.182.13.3802-3808.2000

Dubrac S Touati D (2002) Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli . Microbiology 148, 147–156.

Niederhoffer E.C Naranjo C.M Bradley K.L Fee J.A (1990) Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J. Bacteriol. 172, 1930–1938.

10.1111/j.1365-2958.1993.tb01134.x

Razquin P Schmitz S Fillat M.F Peleato M.L Böhme H (1994) Transcriptional and translational analysis of ferredoxin and flavodoxin under iron and nitrogen stress in Anabaena sp. strain PCC 7120. J. Bacteriol. 176, 7409–7411.

Crosa J.H (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61, 319–336.

10.1099/13500872-142-6-1469

De Luca N Wexler M Pereira M Yeoman K.H Johnston A.W (1998) Is the fur gene of Rhizobium leguminosarum essential. FEMS Microbiol. Lett. 168, 289–295.

10.1046/j.1365-2958.1998.00883.x

10.1046/j.1365-2958.1998.00921.x

10.1046/j.1365-2958.2002.03084.x

10.1046/j.1365-2958.2002.03113.x

10.1111/j.1365-2958.1995.mmi_18010163.x

10.1007/s002030050451

10.1128/JB.183.1.162-170.2001

10.1046/j.1365-2958.2002.03088.x

10.1093/nar/9.11.2629

Rosenberg A.H Gefter M.L (1969) An iron-dependent modification of several transfer RNA specied in Escherichia coli . Mol. Biol. 46, 581–584.

10.1093/emboj/19.8.1861

Tang Y Guest J.R (1999) Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145, 3069–3079.

10.1073/pnas.96.18.10412

10.1046/j.1365-2958.1998.00852.x

10.1073/pnas.87.15.5968

10.1046/j.1365-2958.1996.1461511.x

Hill P.J Cockayne A Landers P Morrissey J.A Sims C.M Williams P (1998) SirR, a novel iron-dependent repressor in Staphylococcus epidermidis . Infect. Immun. 66, 4123–4129.

Schmitt M.P Talley B.G Holmes R.K (1997) Characterisation of lipoprotein IRP1 from Corynebacterium diphtheriae, which is regulated by the diphtheria toxin repressor (DtxR) and iron. Infect. Immun. 65, 5364–5367.

Ding X Zeng H Schiering N Ringe D Murphy J.R (1998) Identification of the primary metal ion-activation sites of the diphtheria, tox repressor by X-ray crystallography and site-directed mutational analysis. Nat. Struct. Biol. 3, 382–387.

10.1006/jmbi.1998.2339

10.1074/jbc.273.35.22420

Panek H O'Brian M.R (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148, 2273–2282.

Hamza I Qi Z King N.D O'Brien M.R (2000) Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum . Microbiology 146, 669–676.

10.1073/pnas.96.23.13056

10.1016/S1097-2765(01)00431-2

Spiro, T.G. (1982) Iron–Sulfur Proteins. Wiley, New York.

10.1016/0006-291X(66)90561-4

10.1074/jbc.273.21.13264

Frazzon J Dean D.R (2001) Feedback regulation of iron–sulfur cluster biosynthesis. Proc. Natl. Acad. Sci. USA 26, 14751–14753.

10.1073/pnas.251550898

10.1128/JB.183.15.4562-4570.2001

10.1111/j.1574-6968.1983.tb00504.x

Weinberg E.D (1997) The Lactobacilli anomaly: total iron abstinence. Perspect. Biol. Med. 40, 1–6.

10.1126/science.288.5471.1651

10.1110/ps.9.5.956

Kehres D.G Janakiraman A Slauch J.M Maguire M.E (2002) SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium . Bacteriology 184, 3159–3166.

10.1016/S0168-6445(03)00052-4

Angerer A Gaisser S Braun V (1990) Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggests a periplasmic-binding protein-dependent iron transport mechanism. J. Bacteriol. 172, 572–578.

10.1128/JB.183.9.2779-2784.2001

Adhikari P Berish S.A Nowalk A.J Veraldi K.L Morse S.A Mietzner T.A (1996) The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J. Bacteriol. 178, 2145–2149.

10.1093/emboj/cdg061

Kammler M Schon C Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli . J. Bacteriol. 175, 6212–6219.

10.1073/pnas.242338299

10.1128/JB.183.16.4806-4813.2001

10.1046/j.1365-2958.2003.03337.x