Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goedert, 2001, α-Synuclein and neurodegenerative diseases, Nat. Rev. Neurosci., 2, 492, 10.1038/35081564
Bussell, 2003, A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins, J. Mol. Biol., 329, 763, 10.1016/S0022-2836(03)00520-5
Jao, 2004, Structure of membrane-bound α-synuclein studied by site-directed spin labeling, Proc. Natl. Acad. Sci. U.S.A., 101, 8331, 10.1073/pnas.0400553101
Giasson, 2001, A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly, J. Biol. Chem., 276, 2380, 10.1074/jbc.M008919200
Bertoncini, 2005, Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein, Proc. Natl. Acad. Sci. U.S.A., 102, 1430, 10.1073/pnas.0407146102
Fernandez, 2004, NMR of α-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation, EMBO J., 23, 2039, 10.1038/sj.emboj.7600211
Hoyer, 2004, Impact of the acidic C-terminal region comprising amino acids 109–140 on α-synuclein aggregation in vitro, Biochemistry, 43, 16233, 10.1021/bi048453u
Weinreb, 1996, NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded, Biochemistry, 35, 13709, 10.1021/bi961799n
Uversky, 2001, Evidence for a partially folded intermediate in α-synuclein fibril formation, J. Biol. Chem., 276, 10737, 10.1074/jbc.M010907200
Uversky, 2001, Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: a possible molecular link between Parkinson's disease and heavy metal exposure, J. Biol. Chem., 276, 44284, 10.1074/jbc.M105343200
Hoyer, 2002, Dependence of α-synuclein aggregate morphology on solution conditions, J. Mol. Biol., 322, 383, 10.1016/S0022-2836(02)00775-1
Uversky, 2003, A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders, J. Biomol. Struct. Dyn., 21, 211, 10.1080/07391102.2003.10506918
Uversky, 2004, Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochim. Biophys. Acta, 1698, 131, 10.1016/j.bbapap.2003.12.008
Fink, 2006, The aggregation and fibrillation of α-synuclein, Acc. Chem. Res., 39, 628, 10.1021/ar050073t
Binolfi, 2006, Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement, J. Am. Chem. Soc., 128, 9893, 10.1021/ja0618649
Bertoncini, 2007, Structural characterization of the intrinsically unfolded protein β-synuclein, a natural negative regulator of α-synuclein aggregation, J. Mol. Biol., 372, 708, 10.1016/j.jmb.2007.07.009
Paleologou, 2008, Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of α-synuclein, J. Biol. Chem., 283, 16895, 10.1074/jbc.M800747200
Lamberto, 2009, Structural and mechanistic basis behind the inhibitory interaction of PcTS on α-synuclein amyloid fibril formation, Proc. Natl. Acad. Sci. U.S.A., 106, 21057, 10.1073/pnas.0902603106
Bussell, 2001, Residual structure and dynamics in Parkinson's disease-associated mutants of α-synuclein, J. Biol. Chem., 276, 45996, 10.1074/jbc.M106777200
Croke, 2008, Hydrogen exchange of monomeric α-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli, Protein Sci., 17, 1434, 10.1110/ps.033803.107
Dedmon, 2005, Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations, J. Am. Chem. Soc., 127, 476, 10.1021/ja044834j
Lee, 2005, Tertiary contact formation in α-synuclein probed by electron transfer, J. Am. Chem. Soc., 127, 16388, 10.1021/ja0561901
Jensen, 2011, Intrinsic disorder in measles virus nucleocapsids, Proc. Natl. Acad. Sci. U.S.A., 108, 9839, 10.1073/pnas.1103270108
Wells, 2008, Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain, Proc. Natl. Acad. Sci. U.S.A., 105, 5762, 10.1073/pnas.0801353105
Bartels, 2011, α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, 477, 107, 10.1038/nature10324
Wang, 2011, A soluble α-synuclein construct forms a dynamic tetramer, Proc. Natl. Acad. Sci. U.S.A., 108, 17797, 10.1073/pnas.1113260108
Bussell, 2005, Helix periodicity, topology, and dynamics of membrane-associated α-synuclein, Protein Sci., 14, 862, 10.1110/ps.041255905
Ulmer, 2005, Structure and dynamics of micelle-bound human α-synuclein, J. Biol. Chem., 280, 9595, 10.1074/jbc.M411805200
Eliezer, 2001, Conformational properties of α-synuclein in its free and lipid-associated states, J. Mol. Biol., 307, 1061, 10.1006/jmbi.2001.4538
Sung, 2007, Residual structure, backbone dynamics, and interactions within the synuclein family, J. Mol. Biol., 372, 689, 10.1016/j.jmb.2007.07.008
Alves, 2005, Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms, Biochem. Biophys. Res. Commun., 332, 450, 10.1016/j.bbrc.2005.04.151
Kaplon, 2009, The rod-shaped conformation of Starmaker, Biochim. Biophys. Acta, 1794, 1616, 10.1016/j.bbapap.2009.07.010
Zeev-Ben-Mordehai, 2003, The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded, Proteins, 53, 758, 10.1002/prot.10471
Fauvet, 2012, α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as a disordered monomer, J. Biol. Chem., 287, 15345, 10.1074/jbc.M111.318949
Trexler, 2012, N-terminal acetylation is critical for forming α-helical oligomer of α-synuclein, Protein Sci., 21, 601, 10.1002/pro.2056
Ito, 2010, Cellular structural biology, Curr. Opin. Struct. Biol., 20, 640, 10.1016/j.sbi.2010.07.006
Selenko, 2007, Looking into live cells with in-cell NMR spectroscopy, J. Struct. Biol., 158, 244, 10.1016/j.jsb.2007.04.001
Serber, 2001, Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy, J. Am. Chem. Soc., 123, 8895, 10.1021/ja0112846
Robinson, 2012, In-cell NMR spectroscopy in Escherichia coli, Methods Mol. Biol., 831, 261, 10.1007/978-1-61779-480-3_15
Li, 2008, Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy, J. Am. Chem. Soc., 130, 6310, 10.1021/ja801020z
McNulty, 2006, Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder, J. Mol. Biol., 355, 893, 10.1016/j.jmb.2005.11.033
Sharaf, 2010, A bioreactor for in-cell protein NMR, J. Magn. Reson., 202, 140, 10.1016/j.jmr.2009.10.008
Barnes, 2011, Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy, ChemBioChem, 12, 390, 10.1002/cbic.201000610
Bertini, 2011, 13C direct-detection biomolecular NMR spectroscopy in living cells, Angew. Chem. Int. Ed., 50, 2339, 10.1002/anie.201006636
Bermel, 2009, Speeding up 13C direct detection biomolecular NMR spectroscopy, J. Am. Chem. Soc., 131, 15339, 10.1021/ja9058525
Wishart, 1994, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data, J. Biomol. NMR, 4, 171, 10.1007/BF00175245