Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bjarnsholt, 2013, The role of bacterial biofilms in chronic infections, APMIS, 121, 1, 10.1111/apm.12099
Rimondini, 2016, 991
Sender, 2016, Revised estimates for the number of human and bacteria cells in the body, PLoS Biol., 14, 10.1371/journal.pbio.1002533
Bjarnsholt, 2011, Introduction to biofilms, 1
Irie, 2012, Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 109, 20632, 10.1073/pnas.1217993109
Gupta, 2016, Biofilm, pathogenesis and prevention – a journey to break the wall: a review, Arch. Microbiol., 198, 1, 10.1007/s00203-015-1148-6
Chen, 2013, Novel strategies for the prevention and treatment of biofilm related infections, Int. J. Mol. Sci., 14, 18488, 10.3390/ijms140918488
Paharik, 2016, The staphylococcal biofilm: adhesins, regulation, and host response, Microbiol. Spectr., 4, 10.1128/microbiolspec.VMBF-0022-2015
Zaborowska, 2017, Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants, J. Biomed. Mater. Res. B, 105, 2630, 10.1002/jbm.b.33803
Khan, 2008, Infection in orthopedic implant surgery, its risk factors and outcome, J. Ayub. Med. Coll., 20, 23
Cerca, 2005, Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis, Res. Microbiol., 156, 506, 10.1016/j.resmic.2005.01.007
Rahim, 2016, Susceptibility of metallic magnesium implants to bacterial biofilm infections, J. Biomed. Mater. Res. A, 104, 1489, 10.1002/jbm.a.35680
Koseki, 2014, Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study, PLoS One, 9, e107588, 10.1371/journal.pone.0107588
Glage, 2017, A new model for biofilm formation and inflammatory tissue reaction: intraoperative infection of a cranial implant with Staphylococcus aureus in rats, Acta Neurochir., 159, 1747, 10.1007/s00701-017-3244-7
Oliveira, 2018, Staphylococcus aureus and Staphylococcus epidermidis infections on implants, J. Hosp. Infect., 98, 111, 10.1016/j.jhin.2017.11.008
Zheng, 2018, Colonization of medical devices by staphylococci, J. Appl. Environ. Microbiol., 20, 3141
Darouiche, 2004, Treatment of infections associated with surgical implants, N. Engl. J. Med., 350, 1422, 10.1056/NEJMra035415
Ribeiro, 2012, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions, Biomatter, 2, 176, 10.4161/biom.22905
Chang, 2017, Surface sensing for biofilm formation in Pseudomonas aeruginosa, Front. Microbiol., 8
Davies, 2003, Understanding biofilm resistance to antibacterial agents, Nat. Rev. Drug Discov., 2, 114, 10.1038/nrd1008
Jamal, 2018, Bacterial biofilm and associated infections, J. Chin. Med. Assoc., 81, 7, 10.1016/j.jcma.2017.07.012
Karatan, 2009, Signals, regulatory networks, and materials that build and break bacterial biofilms, Microbiol. Mol. Biol. Rev., 73, 310, 10.1128/MMBR.00041-08
Joo, 2012, Molecular basis of in vivo biofilm formation by bacterial pathogens, Chem. Biol., 19, 1503, 10.1016/j.chembiol.2012.10.022
Veerachamy, 2014, Bacterial adherence and biofilm formation on medical implants: a review, Proc. Inst. Mech. Eng. H, 228, 1083, 10.1177/0954411914556137
Lorite, 2011, The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution, J. Colloid Interface Sci., 359, 289, 10.1016/j.jcis.2011.03.066
Chao, 2014, Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease, Front. Cell. Infect. Microbiol., 4
Buttner, 2015, Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions, Front. Cell. Infect. Microbiol., 5, 14
Kiedrowski, 2011, New approaches for treating staphylococcal biofilm infections, Ann. N.Y. Acad. Sci., 1241, 104, 10.1111/j.1749-6632.2011.06281.x
Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002
Sunarintyas, 2016, 103
Vickery, 2011, Prevention of implantable medical device failure (IMD) associated with biofilm infection, Am. J. Infect. Contr., 39, 10.1016/j.ajic.2011.04.099
Arciola, 2018, Implant infections: adhesion, biofilm formation and immune evasion, Nat. Rev. Microbiol., 16, 397, 10.1038/s41579-018-0019-y
Welliver, 2014, Significance of biofilm for the prosthetic surgeon, Curr. Urol. Rep., 15, 411, 10.1007/s11934-014-0411-8
Floyd, 2017, 47
Hall, 2017, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria, FEMS Microbiol. Rev., 41, 276, 10.1093/femsre/fux010
Oppenheimer-Shaanan, 2013, Small molecules are natural triggers for the disassembly of biofilms, Trends Microbiol., 21, 594, 10.1016/j.tim.2013.08.005
Vergidis, 2012, Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections, Infect. Dis. Clin. North Am., 26, 173, 10.1016/j.idc.2011.09.012
Fux, 2003, Bacterial biofilms: a diagnostic and therapeutic challenge, Expert Rev. Antiinfect. Ther., 1, 667, 10.1586/14787210.1.4.667
Walters, 2003, Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa to ciprofloxacin and tobramycin, Antimicrob. Agents Chemother., 47, 317, 10.1128/AAC.47.1.317-323.2003
Tseng, 2013, The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin, Environ. Microbiol., 15, 2865, 10.1111/1462-2920.12155
Drago, 2017, 25
Zhang, 2008, Involvement of a novel efflux system in biofilm-specific resistance to antibiotics, J. Bacteriol., 190, 4447, 10.1128/JB.01655-07
Adam, 2002, Mixed species biofilms of Candida albicans and Staphylococcus epidermidis, J. Med. Microbiol., 51, 344, 10.1099/0022-1317-51-4-344
Stoodley, 2013, 77
Singhai, 2012, A study on device-related infections with special reference to biofilm production and antibiotic resistance, J. Global Infect. Dis., 4, 193, 10.4103/0974-777X.103896
Shah, 2013, Evolving strategies for preventing biofilm on implantable materials, Mater. Today, 16, 177, 10.1016/j.mattod.2013.05.003
Al-Ahmad, 2010, Biofilm formation and composition on different implant materials in vivo, J. Biomed. Mater. Res. Part B, 95, 101, 10.1002/jbm.b.31688
Shunmugaperumal, 2010
Laosuwan, 2018, Comparison of biofilm formation and migration of Streptococcus mutans on tooth roots and titanium miniscrews, Clin. Exp. Dent. Res., 4, 40, 10.1002/cre2.101
Hahnel, 2017, 117
Roehling, 2017, In vitro biofilm formation on titanium and zirconia implant surfaces, J. Periodontol., 88, 298, 10.1902/jop.2016.160245
Batistao, 2016, Biofilm formation of Brazilian MRSA strains: prevalence of biofilm determinants and clonal profiles, J. Med. Microbiol., 65, 286, 10.1099/jmm.0.000228
Tran, 2015, In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications, Mater. Sci. Eng. C, 47, 63, 10.1016/j.msec.2014.11.016
Nowakowska, 2014, Foreign body infection models to study host-pathogen response and antimicrobial tolerance of bacterial biofilm, Antibiotics (Basel), 3, 378, 10.3390/antibiotics3030378
Wei, 2015, Molecular tweeting: unveiling the social network behind heterogeneous bacteria populations, 366
Yan, 2010, The effect of c-di-GMP (3′-5′-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans, Am. J. Microbiol. Res., 165, 87, 10.1016/j.micres.2008.10.001
Grande, 2014, Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of extracellular DNA and carbohydrates, Pathog. Dis., 70, 414, 10.1111/2049-632X.12158
Berends, 2010, Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps, J. Innate Immun., 2, 576, 10.1159/000319909
Thammavongsa, 2013, Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death, Science, 342, 863, 10.1126/science.1242255
Lebeaux, 2013, From in vitro to in vivo models of bacterial biofilm-related infections, Pathogens, 2, 288, 10.3390/pathogens2020288
Speziale, 2015, Biofilm formation by staphylococci and streptococci: structural, functional, and regulatory aspects and implications for pathogenesis, Front. Cell. Infect. Microbiol., 5, 31, 10.3389/fcimb.2015.00031
Gu, 2013, Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms, Langmuir, 29, 11145, 10.1021/la402608z
Juhlin, 2017, Staphylococcal biofilm gene expression on biomaterials – a methodological study, J. Biomed. Mater. Res. Part A, 105, 3400, 10.1002/jbm.a.36171
Klausen, 2003, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms, Mol. Microbiol., 50, 61, 10.1046/j.1365-2958.2003.03677.x
Sauer, 2002, Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, J. Bacteriol., 184, 1140, 10.1128/jb.184.4.1140-1154.2002
Kaplan, 2010, Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses, J. Dent., 89, 205
Boles, 2011, Staphylococcal biofilm disassembly, Trends Microbiol., 19, 449, 10.1016/j.tim.2011.06.004
Lister, 2014, Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front. Cell. Infect. Microbiol., 4, 178, 10.3389/fcimb.2014.00178
Stoica, 2017, 3
von Eiff, 2005, Infections associated with medical devices: pathogenesis, management and prophylaxis, Drugs, 65, 179, 10.2165/00003495-200565020-00003
Speziale, 2014, Protein-based biofilm matrices in Staphylococci, Front. Cell. Infect. Microbiol., 4, 10.3389/fcimb.2014.00171
Hammer, 2011, Molecular mechanisms of Staphylococcus aureus iron acquisition, Annu. Rev. Microbiol., 65, 129, 10.1146/annurev-micro-090110-102851
Sinha, 1999, Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1, Cell Microbiol., 101, 10.1046/j.1462-5822.1999.00011.x
Peacock, 1999, Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells, Microbiology (Reading, England), 145, 3477, 10.1099/00221287-145-12-3477
Edwards, 2011, Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA, PLoS One, 6, e18899, 10.1371/journal.pone.0018899
Li, 2012, MRSA epidemic linked to a quickly spreading colonization and virulence determinant, Nat. Med., 18, 816, 10.1038/nm.2692
Vuong, 2004, Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system, Cell Microbiol., 6, 269, 10.1046/j.1462-5822.2004.00367.x
He, 2015, Role of the luxS gene in initial biofilm formation by Streptococcus mutans, J. Mol. Microbiol. Biotechnol., 25, 60, 10.1159/000371816
Laverty, 2015, 19
Winzer, 2002, Bacterial cell-to-cell communication: sorry, can't talk now – gone to lunch!, Curr. Opin. Microbiol., 5, 216, 10.1016/S1369-5274(02)00304-1
Puiu, 2017, 25
Brackman, 2011, Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo, Antimicrob. Agents Chemother., 55, 2655, 10.1128/AAC.00045-11
Moormeier, 2014, Temporal and stochastic control of Staphylococcus aureus biofilm development, MBio, 5, 10.1128/mBio.01341-14
Gray, 2016, Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry, Microfluid. BioMEMS Med. Microsyst. XIV
Loza-Correa, 2017, 181
Doll, 2016, Quantifying implant-associated biofilms: comparison of microscopic, microbiologic and biochemical methods, J. Microbiol. Methods, 130, 61, 10.1016/j.mimet.2016.07.016
Lee, 2011, Microfluidic approach to create three-dimensional tissue models for biofilm-related infection of orthopaedic implants, Tissue Eng. C Methods, 17, 39, 10.1089/ten.tec.2010.0285
Chu, 2015, A new rabbit model of implant-related biofilm infection: development and evaluation, Front. Mater. Sci., 10, 80, 10.1007/s11706-016-0324-1
Chen-Charpentier, 2011, Biofilm growth on medical implants with randomness, Math. Comput. Modell., 54, 1682, 10.1016/j.mcm.2010.11.075
Buhmann, 2016, In vitro biofilm models for device-related infections, Trends Biotechnol., 34, 945, 10.1016/j.tibtech.2016.05.016
H.S.M.D.i.C. Canada, https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-devices/activities/fact-sheets/safe-medical-devices-fact-sheet.html, (2014).
Health Canada, https://www.canada.ca/en/health-canada/services/drugs-health-products/medical-devices/application-information/guidance-documents/guidance-document-guidance-risk-based-classification-system-non-vitro-diagnostic.html, (2015).
2007, 2
Reportlinker, 2015
Donelli, 2015
Barnes, 2015
Moriarty, 2013
Campoccia, 2013, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 34, 8533, 10.1016/j.biomaterials.2013.07.089
Sohns, 2017, Targeting cardiovascular implant infection: multimodality and molecular imaging, Circ. Cardiovasc. Imaging, 10, 10.1161/CIRCIMAGING.117.005376
Rosenthal, 2016, International nosocomial infection control consortium report, data summary of 50 countries for 2010–2015: device-associated module, Am. J. Infect. Contr., 44, 1495, 10.1016/j.ajic.2016.08.007
Guggenbichler, 2011, Incidence and clinical implication of nosocomial infections associated with implantable biomaterials – catheters, ventilator-associated pneumonia, urinary tract infections, GMS J. Med. Educ., 6
Darouiche, 1998, Anti-infective efficacy of antiseptic-coated intramedullary nails, J. Bone Joint Surg. Br., 80, 1336, 10.2106/00004623-199809000-00013
Leatherman, 2010
Hovis, 2018, Intraoperative vancomycin powder reduces Staphylococcus aureus surgical site infections and biofilm formation on fixation implants in a rabbit model, J. Orthop. Trauma, 32, 263, 10.1097/BOT.0000000000001136
Ikeanyi, 2013, Risk factors for surgical site infections following clean orthopaedic operations, Niger, J. Clin. Pract., 16, 443
Kalmeijer, 2000, Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery, Infect. Contr. Hosp. Epidemiol., 21, 319, 10.1086/501763
Whitehouse, 2002, The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost, Infect. Contr. Hosp. Epidemiol., 23, 183, 10.1086/502033
Boersma, 2016, Infection and mortality after implantation of a subcutaneous ICD after transvenous ICD extraction, Heart Rhythm, 13, 157, 10.1016/j.hrthm.2015.08.039
Berbari, 1998, Risk factors for prosthetic joint infection: case-control study, Clin. Infect. Dis., 27, 1247, 10.1086/514991
Wu, 2004, Generation of pulsed electric fields for processing microbes, IEEE Trans. Plasma Sci., 32, 1551, 10.1109/TPS.2004.831732
Haddad, 2015, In vitro assessment of electric currents increasing the effectiveness of vancomycin against Staphylococcus epidermidis biofilms, Artif. Organs, 40, 804, 10.1111/aor.12678
Freebairn, 2013, Electrical methods of controlling bacterial adhesion and biofilm on device surfaces, Expert Rev. Med. Devices, 10, 85, 10.1586/erd.12.70
Giladi, 2008, Microbial growth inhibition by alternating electric fields, Antimicrob. Agents Chemother., 52, 3517, 10.1128/AAC.00673-08
Gilotra, 2012, Capacitive coupling reduces instrumentation-related infection in rabbit spines: a pilot study, Clin. Orthop. Relat. Res., 470, 1646, 10.1007/s11999-011-2231-1
Khan, 2016, Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields, Biotechnol. Bioeng., 113, 643, 10.1002/bit.25818
Pillet, 2016, Cell wall as a target for bacteria inactivation by pulsed electric fields, Sci. Rep., 6, 19778, 10.1038/srep19778
Sandvik, 2013, Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid, PLoS One, 8, e55118, 10.1371/journal.pone.0055118
Boda, 2016, Inhibitory effect of direct electric field and HA-ZnO composites on S. aureus biofilm formation, J. Biomed. Mater. Res. B, 104, 1064, 10.1002/jbm.b.33455
Fadel, 2014, Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency, J. Appl. Microbiol., 117, 358, 10.1111/jam.12527
Subramanian, 2016, Autoinducer-2 analogs and electric fields – an antibiotic-free bacterial biofilm combination treatment, Biomed. Microdevices, 18, 95, 10.1007/s10544-016-0120-9
Bordi, 2011, Hacking into bacterial biofilms: a new therapeutic challenge, Ann. Intensive Care, 1
DeJong, 2001, Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model, J. Trauma, 50, 1008, 10.1097/00005373-200106000-00006
Francolini, 2010, Prevention and control of biofilm-based medical-device-related infections, FEMS Immunol. Med. Microbiol., 59, 227, 10.1111/j.1574-695X.2010.00665.x
Rodrigues, 2007, Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses, J. Biomed. Mater. Res. B, 81, 358, 10.1002/jbm.b.30673
Kannan, 2015, 355
Neoh, 2015, 133
Alarcon, 2015
Ahumada, 2018, Protein capped nanosilver free radical oxidation: role of biomolecule capping on nanoparticle colloidal stability and protein oxidation, Chem. Commun., 54, 4724, 10.1039/C7CC08629F
Griffith, 2015, Anti-microbiological and anti-infective activities of silver, 127
Cao, 2017
Yuehuei, 1997, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, J. Biomed. Mater. Res., 43, 338
Raad, 1998, Intravascular-catheter-related infections, Lancet, 351, 893, 10.1016/S0140-6736(97)10006-X
Khare, 2007, Reduction of catheter-related colonisation by the use of a silver zeolite-impregnated central vascular catheter in adult critical care, J. Infect., 54, 146, 10.1016/j.jinf.2006.03.002
Qin, 2009, Organic compounds inhibiting S. epidermidis adhesion and biofilm formation, Ultramicroscopy, 109, 881, 10.1016/j.ultramic.2009.03.040
Bruellhoff, 2010, Surface coating strategies to prevent biofilm formation on implant surfaces, Int. J. Artif. Organs, 33, 646, 10.1177/039139881003300910
Humblot, 2009, The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers, Biomaterials, 30, 3503, 10.1016/j.biomaterials.2009.03.025
Kim, 2013, Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14, PLoS One, 8, e76106, 10.1371/journal.pone.0076106
Chaignon, 2007, Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition, Appl. Microbiol. Biotechnol., 75, 125, 10.1007/s00253-006-0790-y
Izano, 2008, Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms, Appl. Environ. Microbiol., 74, 470, 10.1128/AEM.02073-07
Williams, 1997, In vitro response of Escherichia coli to antibiotics and ultrasound at various insonation intensities, J. Biomater. Appl., 12, 10.1177/088532829701200102
Katsikogianni, 2004, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, Eur. Cell Mater., 8, 37, 10.22203/eCM.v008a05
Zhang, 2011, Impact of microbial attachment on intravascular catheter-related infections, Int. J. Antimicrob. Agents, 38, 9, 10.1016/j.ijantimicag.2011.01.020
Kolodkin-Gal, 2010, D-amino acids trigger biofilm disassembly, Science, 328, 627, 10.1126/science.1188628
Jia, 2017, Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine, Sci. Rep., 7, 6946, 10.1038/s41598-017-07312-7
Xu, 2017, Advances in the treatment of problematic industrial biofilms, World J. Microbiol. Biotechnol., 33, 97, 10.1007/s11274-016-2203-4
Ensing, 2005, Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo, J. Appl. Microbiol., 99, 443, 10.1111/j.1365-2672.2005.02643.x
Kopel, 2011, Surface acoustic waves increase the susceptibility of Pseudomonas aeruginosa biofilms to antibiotic treatment, Biofouling, 27, 701, 10.1080/08927014.2011.597051
Dong, 2013, Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm, J. Antimicrob. Chemother., 68, 816, 10.1093/jac/dks490
Cai, 2017, A review of the combination therapy of low frequency ultrasound with antibiotics, BioMed Res. Int., 2017, 2317846, 10.1155/2017/2317846
Carmen, 2004, Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli, J. Infect. Chem., 10, 193, 10.1007/s10156-004-0319-1
Rediske, 1999, Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model, Antimicrob. Agents Chemother., 43, 1211, 10.1128/AAC.43.5.1211
Peterson, 2000, The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli, Coll. Surf. B, 17, 219, 10.1016/S0927-7765(99)00117-4
Bandara, 2014, Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro, AAPS PharmSciTech, 15, 1644, 10.1208/s12249-014-0200-1
Delaviz, 2015, Infection resistant biomaterials, 223
Bazaka, 2012, Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms, Appl. Microbiol. Biotechnol., 95, 299, 10.1007/s00253-012-4144-7
Bazaka, 2015, 103
Saffarpour, 2016, Bactericidal effect of erbium-doped yttrium aluminum garnet laser and photodynamic therapy on aggregatibacter actinomycetemcomitans biofilm on implant surface, Int. J. Oral Maxillofac. Implants, 31, e71, 10.11607/jomi.4224
Leblebicioglu, 2017, In vitro-activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces, PLoS One, 12
Cunha, 2016, Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation, Appl. Surf. Sci., 360, 485, 10.1016/j.apsusc.2015.10.102
Doll, 2017, Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties, ACS Appl. Mater. Interf., 9, 9359, 10.1021/acsami.6b16159
Damestani, 2016, Evaluation of laser bacterial anti-fouling of transparent nanocrystalline yttria-stabilized-zirconia cranial implant, Lasers Surg. Med., 48, 782, 10.1002/lsm.22558
Zoccolillo, 2016, Antimicrobial photodynamic therapy of S. mutans biofilms attached to relevant dental materials, Lasers Surg. Med., 48, 995, 10.1002/lsm.22534
Giannelli, 2017, Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study, Lasers Med. Sci., 32, 857, 10.1007/s10103-017-2185-y
Kushima, 2016, Evaluation of temperature and roughness alteration of diode laser irradiation of zirconia and titanium for peri-implantitis treatment, Photomed. Laser Surg., 34, 194, 10.1089/pho.2015.4026
Yin, 2013, Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond, Curr. Opin. Pharmacol., 13, 731, 10.1016/j.coph.2013.08.009
Varela Kellesarian, 2017, Efficacy of antimicrobial photodynamic therapy in the disinfection of acrylic denture surfaces: a systematic review, Photodiagn. Photodyn. Ther., 17, 103, 10.1016/j.pdpdt.2016.12.001
Vassena, 2014, Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material, Int. J. Antimicrob. Agents, 44, 47, 10.1016/j.ijantimicag.2014.03.012
Drago, 2016, Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions, J. Chemother., 28, 383, 10.1080/1120009X.2016.1158489
Giannelli, 2016, The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study, Lasers Med. Sci., 31, 1613, 10.1007/s10103-016-2025-5
Eick, 2013, Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis, Photodiagn. Photodyn. Ther., 10, 156, 10.1016/j.pdpdt.2012.12.001
Cho, 2015, The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium, J. Periodontal Implant. Sci., 45, 38, 10.5051/jpis.2015.45.2.38
Karimi, 2016, Efficacy of antimicrobial photodynamic therapy as an adjunctive to mechanical debridement in the treatment of peri-implant diseases: a randomized controlled clinical trial, J. Lasers Med. Sci., 7, 139, 10.15171/jlms.2016.24
Quishida, 2015, Photodynamic inactivation of a multispecies biofilm using Photodithazine((R)) and LED light after one and three successive applications, Lasers Med. Sci., 30, 2303, 10.1007/s10103-015-1811-9
de Freitas-Pontes, 2014, Photosensitization of in vitro biofilms formed on denture base resin, J. Prosthet. Dent., 112, 632, 10.1016/j.prosdent.2014.01.001
Vollmerhausen, 2017, Visible and UVA light as a potential means of preventing Escherichia coli biofilm formation in urine and on materials used in urethral catheters, J. Photochem. Photobiol. B, 170, 295, 10.1016/j.jphotobiol.2017.04.018
Raghavachari, 2012, Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method, Design Qual. Biomed. Technol. V
Paredes, 2014, Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes, J. Microbiol. Meth., 100, 77, 10.1016/j.mimet.2014.02.022
Khetani, 2015, Surface enhanced Raman Scattering (SERS) using nanoparticles, 47