Bacterial Virulence Factors: Secreted for Survival

Springer Science and Business Media LLC - Tập 57 Số 1 - Trang 1-10 - 2017
A. Sharma1, Neha Dhasmana1, Neha Dubey2, Nishant Kumar1, Aakriti Gangwal1, Meetu Gupta1, Yogendra Singh2
1CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
2Department of Zoology University of Delhi Delhi-110007 India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dorhoi A, Kaufmann SH (2011) Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 45:2191–2202. doi: 10.1002/eji.201545493

Lerner TR, Borel S, Gutierrez MG (2015) The innate immune response in human tuberculosis. Cell Microbiol 17:1277–1285. doi: 10.1111/cmi.12480

Dorhoi A, Reece ST, Kaufmann SH (2011) For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 240:235–251. doi: 10.1111/j.1600-065X.2010.00994.x

Delogu G, Provvedi R, Sali M, Manganelli R (2015) Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 10:1177–1194. doi: 10.2217/fmb.15.26

Rohde KH, Veiga DF, Caldwell S, Balázsi G, Russell DG (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8:e1002769. doi: 10.1371/journal.ppat.1002769

Koul A, Herget T, Klebl B, Ullrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2:189–202. doi: 10.1038/nrmicro840

Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma—the critical battlefield in host immunity and disease. Front Immunol 4:98. doi: 10.3389/fimmu.2013.00098

Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 9:37–49. doi: 10.1016/j.cell.2008.11.014

Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4:3–66. doi: 10.4161/viru.22329

Koul A, Choidas A, Treder M, Tyagi AK, Drlica K, Singh Y, Ullrich A (2000) Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 182:5425–5432. doi: 10.1128/JB.182.19.5425-5432.2000

Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H + -ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 108:19371–19376. doi: 10.1073/pnas.1109201108

Zhou B, He Y, Zhang X, Xu J, Luo Y, Wang Y, Franzblau SG, Yang Z, Chan RJ, Liu Y, Zheng J, Zhang ZY (2010) Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 107:4573–4578. doi: 10.1073/pnas.0909133107

Wong D, Chao JD, Av-Gay Y (2013) Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends Microbiol 21:100–109. doi: 10.1016/j.tim.2012.09.002

Fanzani L, Porta F, Meneghetti F, Villa S, Gelain A, Lucarelli AP, Parisini E (2015) Mycobacterium tuberculosis low molecular weight phosphatases (MPtpA and MPtpB): From biological insight to inhibitors. Curr Med Chem 22:3110–3132. doi: 10.3390/md12052953

Sajid A, Arora G, Singhal A, Kalia VC, Singh Y (2015) Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol 69:527–547. doi: 10.1146/annurev-micro-020415-111342

Raynaud C, Etienne C, Peyron P, Laneelle MA, Daffe M (1998) Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology 144:577–587. doi: 10.1099/00221287-144-2-577

Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN (2002) Acid phosphatases. Mol Pathol 55:65–72. doi: 10.1136/mp.55.2.65

Saleh MT, Belisle JT (2000) Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182:6850–6853. doi: 10.1128/JB.182.23.6850-6853.2000

Remaley AT, Kuhns DB, Basford RE, Glew RH, Kaplan SS (1984) Leishmanial phosphatase blocks neutrophil O-2 production. J Biol Chem 259:11173–11175

Reilly TJ, Baron GS, Nano FE, Kuhlenschmidt MS (1996) Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella stularensis. J Biol Chem 271:10973–10983. doi: 10.1074/jbc.271.18.10973

Saha AK, Dowling JN, Lamarco KL, Das S, Remaley AT, Olomu N, Pope MT, Glew RH (1985) Properties of an acid phosphatase from Legionella micdadei which blocks superoxide anion production by human neutrophils. Arch Biochem Biophys 243:150–160. doi: 10.1016/0003-9861(85)90783-0

Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:4033–4038. doi: 10.1073/pnas.0409716102

Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240:252–268. doi: 10.1111/j.1600-065X.2010.00984.x

Festjens N, Bogaert P, Batni A, Houthuys E, Plets E, Vanderschaeghe D, Laukens B, Asselbergh B, Parthoens E, De Rycke R, Willart MA, Jacques P, Elewaut D, Brouckaert P, Lambrecht BN, Huygen K, Callewaert N (2011) Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis. EMBO Mol Med 3:222–234. doi: 10.1002/emmm.201000125

Saikolappan S, Estrella J, Sasindran SJ, Khan A, Armitige LY, Jagannath C, Dhandayuthapani S (2012) The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS ONE 7:e36198. doi: 10.1371/journal.pone.0036198

Puri RV, Reddy PV, Tyagi AK (2013) Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS ONE 8:e70514. doi: 10.1371/journal.pone

Armitige LY, Jagannath C, Wanger AR, Norris SJ (2000) Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68:767–778. doi: 10.1128/IAI.68.2.767-778.2000

Chauhan P, Reddy PV, Singh R, Jaisinghani N, Gandotra S, Tyagi AK (2013) Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS ONE 8:e77930. doi: 10.1371/journal.pone.0077930

Hu D, Wu J, Wang W, Mu M, Zhao R, Xu X, Chen Z, Xiao J, Hu F, Yang Y, Zhang R (2015) Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7. Biochem Biophys Res Commun 461:401–407. doi: 10.1016/j.bbrc.2015.04.051

Shree S, Singh AK, Saxena R, Kumar H, Agarwal A, Sharma VK, Srivastava K, Srivastava KK, Sanyal S, Ramachandran R (2016) The M. tuberculosis HAD phosphatase(Rv3042c) interacts with host proteins and is inhibited by Clofazimine. Cell Mol Life Sci 73:3401–3417. doi: 10.1007/s00018-016-2177-2

Arora G, Tiwari P, Mandal RS, Gupta A, Sharma D, Saha S, Singh R (2014) High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase. J Biol Chem 289:25149–25165. doi: 10.1074/jbc.M114.597682

Seifried A, Schultz J, Gohla A (2013) Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 280:549–571. doi: 10.1111/j.1742-4658.2012.08633.x

Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor eyes absent is a protein tyrosine phosphatase. Nature 426:299–302. doi: 10.1038/nature02097

Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7:21–29. doi: 10.1038/ncb1201

Tribble GD, Mao S, James CE, Lamont RJ (2006) A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci USA 103:11027–11032. doi: 10.1073/pnas.0509813103

Yadav GP, Shree S, Maurya R, Rai N, Singh DK, Srivastava KK, Ramachandran R (2014) Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS ONE 9:e115409. doi: 10.1371/journal.pone.0115409

Hasegawa Y, Tribble GD, Baker HV, Mans JJ, Handfield M, Lamont RJ (2008) Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production. Infect Immun 76:2420–2427. doi: 10.1128/IAI.00156-08

Bainbridge B, Verma RK, Eastman C, Yehia B, Rivera M, Moffatt C, Bhattacharyya I, Lamont RJ, Kesavalu L (2010) Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 78:4560–4569. doi: 10.1128/IAI.00703-10

Moffatt CE, Inaba H, Hirano T, Lamont RJ (2012) Porphyromonas gingivalis SerB-mediated dephosphorylation of host cell cofilin modulates invasion efficiency. Cell Microbiol 14:577–588. doi: 10.1111/j.1462-5822.2011.01743.x

Takeuchi H, Hirano T, Whitmore SE, Morisaki I, Amano A, Lamont RJ (2013) The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-kappaBRelA/p65. PLoS Pathog 9:e1003326. doi: 10.1371/journal.ppat.1003326

Hammerstrom TG, Roh JH, Nikonowicz EP, Koehler TM (2011) Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO(2) signalling. Mol Microbiol 82:634–647. doi: 10.1111/j.1365-2958.2011.07843.x

Makino S, Wataraj M, Cheun HI, Shirahata T, Uchida I (2002) Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax. J Infect Dis 186:227–233. doi: 10.1086/341299

Shannon JG, Ross CL, Koehler TM, Rest RF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189. doi: 10.1128/IAI.71.6.3183-3189.2003

Singh Y, Klimpel KR, Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266:15493–15497

Dhasmana N, Singh LK, Bhaduri A, Misra R, Singh Y (2014) Recent developments in anti-dotes against anthrax. Recent Pat Antiinfect Drug Discov 9:83–96. doi: 10.2174/1574891X09666140830213925

Singh Y, Khanna H, Chopra AP, Mehra V (2001) A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin action in vivo. J Biol Chem 276:22090–22094. doi: 10.1074/jbc.M010222200

Quinn CP, Singh Y, Klimpel KR, Leppla SH (1991) Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem 266:20124–20130

Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737. doi: 10.1126/science.280.5364.734

Liu T, Milia E, Warburton RR, Hill NS, Gaestel M, Kayyali US (2012) Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling. J Cell Physiol 227:1438–1445. doi: 10.1002/jcp.22859

Ouyang W, Torigoe C, Fang H, Xie T, Frucht DM (2014) Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress. J Biol Chem 289:4180–4190. doi: 10.1074/jbc.M113.530006

Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638. doi: 10.1371/journal.ppat.1002638

Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9:e1003452. doi: 10.1371/journal.ppat.1003452

Raymond B, Batsche E, Boutillon F, Wu YZ, Leduc D, Balloy V, Raoust E, Muchardt C, Goossens PL, Touqui L (2009) Anthrax lethal toxin impairs IL-8 expression in epithelial cells through inhibition of histone H3 modification. PLoS Pathog 5:e1000359. doi: 10.1371/journal.ppat.1000359

Chow EM, Batty S, Mogridge J (2010) Anthrax lethal toxin promotes dephosphorylation of TTP and formation of processing bodies. Cell Microbiol 12:557–568. doi: 10.1111/j.1462-5822.2009.01418.x

Warfel JM, D’Agnillo F (2009) Anthrax lethal toxin enhances IkappaB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J Biol Chem 284:25761–25771. doi: 10.1074/jbc.M109.036970

Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

Sastalla I, Tang S, Crown D, Liu S, Eckhaus MA, Hewlett IK, Leppla SH, Moayeri M (2012) Anthrax edema toxin impairs clearance in mice. Infect Immun 80:529–538. doi: 10.1128/IAI.05947-11

Szarowicz SE, During RL, Li W, Quinn CP, Tang WJ, Southwick FS (2009) Bacillus anthracis edema toxin impairs neutrophil actin-based motility. Infect Immun 77:2455–2464. doi: 10.1128/IAI.00839-08

Gekara NO, Westphal K, Ma B, Rohde M, Groebe L, Weiss S (2007) The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 9:2008–2021. doi: 10.1111/j.1462-5822.2007.00932.x

Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656. doi: 10.1074/jbc.M807631200

Mosser EM, Rest RF (2006) The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol 6:56. doi: 10.1186/1471-2180-6-56

Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci USA 107:19002–19007. doi: 10.1073/pnas.1008843107

Bishop BL, Lodolce JP, Kolodziej LE, Boone DL, Tang WJ (2010) The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection. Biochem Biophys Res Commun 394:254–259. doi: 10.1016/j.bbrc.2010.02.091

Lehrer RI, Jung G, Ruchala P, Wang W, Micewicz ED, Waring AJ, Gillespie EJ, Bradley KA, Ratner AJ, Rest RF, Lu W (2009) Human alpha-defensins inhibit hemolysis mediated by cholesterol-dependent cytolysins. Infect Immun 77:4028–4040. doi: 10.1128/IAI.00232-09

Nakouzi A, Rivera J, Rest RF, Casadevall A (2008) Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis. BMC Microbiol 8:159. doi: 10.1186/1471-2180-8-159

Heffernan BJ, Thomason B, Herring-Palmer A, Hanna P (2007) Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol Lett 271:98–105. doi: 10.1111/j.1574-6968.2007.00713.x

Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram- positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200:1647–1655. doi: 10.1084/jem.20041215

Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. doi: 10.1007/s12088-015-0558-0

Kalia VC (2013) Quorum sensing inhibitors: An overview. Biotechnol Adv 31:224–245. doi: 10.1016/j.biotechadv.2012.10.004

Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi: 10.1007/s00248-013-0316-y

Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi: 10.3109/1040841X.2010.532479

Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: Acyl-homoserine lactone-acylase and –lactonase. Open Microbiol J 5:1–13. doi: 10.2174/1874285801105010001

Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. doi: 10.1007/s12088-013-0443-7