Bacterial Persistence

Genetics - Tập 169 Số 4 - Trang 1807-1814 - 2005
Edo Kussell1, Roy Kishony2, Nathalie Q. Balaban3, Stanislas Leibler4
1Rockefeller University New York, New York 10021-6399 USA
2Bauer Center for Genomics Research, Harvard University, Cambridge Massachusetts 02138
3Racah Institute for Physics, Hebrew University, Jerusalem 91904, Israel
4Rockefeller University, New York, New York 10021-6399.

Tóm tắt

Abstract The persistence phenotype is an epigenetic trait exhibited by a subpopulation of bacteria, characterized by slow growth coupled with an ability to survive antibiotic treatment. The phenotype is acquired via a spontaneous, reversible switch between normal and persister cells. These observations suggest that clonal bacterial populations may use persister cells, whose slow division rate under growth conditions leads to lower population fitness, as an “insurance policy” against antibiotic encounters. We present a model of Escherichia coli persistence, and using experimentally derived parameters for both wild type and a mutant strain (hipQ) with markedly different switching rates, we show how fitness loss due to slow persister growth pays off as a risk-reducing strategy. We demonstrate that wild-type persistence is suited for environments in which antibiotic stress is a rare event. The optimal rate of switching between normal and persister cells is found to depend strongly on the frequency of environmental changes and only weakly on the selective pressures of any given environment. In contrast to typical examples of adaptations to features of a single environment, persistence appears to constitute an adaptation that is tuned to the distribution of environmental change.

Từ khóa


Tài liệu tham khảo

2004, Science, 305, 1622, 10.1126/science.1099390

1982, J. Theor. Biol., 94, 135, 10.1016/0022-5193(82)90336-8

2002, Microbiology, 148, 1247, 10.1099/00221287-148-5-1247

2004, PLoS. Biol., 2, 1664

1977, J. Phys. Chem., 81, 2340, 10.1021/j100540a008

2001, Curr. Opin. Microbiol., 4, 582, 10.1016/S1369-5274(00)00254-X

1999, Proc. R. Soc. Lond. Ser. B Biol. Sci., 266, 799, 10.1098/rspb.1999.0708

1995, Theor. Popul. Biol., 47, 212, 10.1006/tpbi.1995.1009

2001, Curr. Opin. Microbiol., 4, 570, 10.1016/S1369-5274(00)00253-8

1995, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 350, 133, 10.1098/rstb.1995.0147

2004, FEMS Microbiol. Lett., 230, 13, 10.1016/S0378-1097(03)00856-5

2003, Mol. Microbiol., 50, 1199, 10.1046/j.1365-2958.2003.03779.x

1996, J. Theor. Biol., 181, 1, 10.1006/jtbi.1996.0109

1969, Proc. Natl. Acad. Sci. USA, 62, 1056, 10.1073/pnas.62.4.1056

1995, Evol. Ecol., 9, 185, 10.1007/BF01237756

1983, J. Bacteriol., 155, 768, 10.1128/jb.155.2.768-775.1983

1986, J. Bacteriol., 166, 399, 10.1128/jb.166.2.399-403.1986

1999, J. Theor. Biol., 197, 541, 10.1006/jtbi.1998.0894

2001, Nat. Rev. Genet., 2, 504

1995, Evolution, 49, 337, 10.1111/j.1558-5646.1995.tb02246.x

2004, Genetics, 167, 523, 10.1534/genetics.167.1.523

1990, Antimicrob. Agents Chemother., 34, 1938, 10.1128/AAC.34.10.1938