Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

Springer Science and Business Media LLC - Tập 14 Số 7 - Trang 2535-2554
Barbara Vu1,2, Miao Chen1, Russell J. Crawford2, Elena P. Ivanova2
1CSIRO Minerals, Bayview Avenue, Clayton, Victoria 3168, Australia
2Faculty of Life and Social Sciences Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

Tóm tắt

Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

Từ khóa


Tài liệu tham khảo

Donlan, 2002, Biofilms: Microbial life on surfaces, Emerging Infect. Dis., 8, 881, 10.3201/eid0809.020063

Costerton, 1999, Introduction to biofilm, Int. J. Antimicrob. Agents, 11, 217, 10.1016/S0924-8579(99)00018-7

Costerton, 1995, Microbial biofilms, Annu. Rev. Microbiol., 49, 711, 10.1146/annurev.mi.49.100195.003431

Socransky, 1998, Microbial complexes in subgingival plaque, J. Clin. Periodontol., 25, 134, 10.1111/j.1600-051X.1998.tb02419.x

Costerton, 1999, Bacterial biofilms: A common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318

Heukelekian, 1940, Relation between food concentration and surface for bacterial growth, J. Bacteriol., 40, 547, 10.1128/jb.40.4.547-558.1940

Zobell, 1943, The effect of solid surfaces upon bacterial activity, J. Bacteriol., 46, 39, 10.1128/jb.46.1.39-56.1943

Davey, 2000, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64, 847, 10.1128/MMBR.64.4.847-867.2000

Costerton, 1978, How bacteria stick, Sci. Am., 238, 86, 10.1038/scientificamerican0178-86

Flemming, H.C., and Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs) – Part I: Structural and ecological aspects. Water Sci. Technol., 43, 1–8.

Singh, 2006, Biofilms: implications in bioremediation, Trends Microbiol., 14, 389, 10.1016/j.tim.2006.07.001

Ahimou, 2007, Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness, Appl. Environ. Microbiol., 73, 2905, 10.1128/AEM.02420-06

Costerton, 2003, The application of biofilm science to the study and control of chronic bacterial infections, J. Clin. Invest., 112, 1466, 10.1172/JCI200320365

Flemming, H.C., and Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs) – Part II: Technical aspects. Water Sci. Technol., 43, 9–16.

Sutherland, 2001, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, 147, 3, 10.1099/00221287-147-1-3

Zandvoort, 2003, Metal immobilisation by biofilms: mechanisms and analytical tools, Rev. Environ. Sci. Biotechnol., 2, 9, 10.1023/B:RESB.0000022995.48330.55

Mayer, 1999, The role of intermolecular interactions: studies on model systems for bacterial biofilms, Int. J. Biol. Macromol., 26, 3, 10.1016/S0141-8130(99)00057-4

Romani, 2008, Relevance of polymeric matrix enzymes during biofilm formation, Microb. Ecol., 56, 427, 10.1007/s00248-007-9361-8

Beech, 2004, Corrosion of technical materials in the presence of biofilms--current understanding and state-of-the art methods of study, Int. Biodeterior. Biodegradation, 53, 177, 10.1016/S0964-8305(03)00092-1

Ruiz, 2008, AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency, Hydrometallurgy, 94, 133, 10.1016/j.hydromet.2008.05.028

Waters, 2005, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol., 21, 319, 10.1146/annurev.cellbio.21.012704.131001

Majerczak, 1998, A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii, Proc. Natl. Acad. Sci. USA, 95, 7687, 10.1073/pnas.95.13.7687

Rivas, 2005, A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans, Biol. Res., 38, 283, 10.4067/S0716-97602005000200018

Davies, 1998, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295, 10.1126/science.280.5361.295

Valenzuela, 2006, Genomics, metagenomics and proteomics in biomining microorganisms, Biotechnol. Adv., 24, 197, 10.1016/j.biotechadv.2005.09.004

Hooshangi, 2008, From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications, Curr. Opin. Biotechnol., 19, 550, 10.1016/j.copbio.2008.10.007

Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165

Farah, 2005, Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans, Appl. Environ. Microbiol., 71, 7033, 10.1128/AEM.71.11.7033-7040.2005

Urbanczyk, 2007, Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov., Int. J. Syst. Evol. Microbiol., 57, 2823, 10.1099/ijs.0.65081-0

Stoodley, 2002, Developmental regulation of microbial biofilms, Curr. Opin. Biotechnol., 13, 228, 10.1016/S0958-1669(02)00318-X

Rashid, 2000, Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA, 97, 9636, 10.1073/pnas.170283397

Nakamura, 2008, The roles of quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa, Jpn. J. Infect. Dis., 61, 375, 10.7883/yoken.JJID.2008.375

Li, 2007, Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture, J. Bacteriol., 189, 6011, 10.1128/JB.00014-07

Fialho, A.M., Moreira, L.M., Granja, A.T., Popescu, A.O., Hoffmann, K., and Sá-Correia, I. (2008). Occurrence, production, and applications of gellan: current state and perspectives. Appl. Microbiol. Biotechnol., 79.

Rehm, B. (2009). Microbial production of biopolymers and polymer precursors: applications and perspectives, Caister Academic.

Rawlings, 2007, The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia, Microbiology, 153, 315, 10.1099/mic.0.2006/001206-0

Gadd, 2004, Microbial influence on metal mobility and application for bioremediation, Geoderma, 122, 109, 10.1016/j.geoderma.2004.01.002

Liu, 2008, Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration, Bioresour. Technol., 99, 4124, 10.1016/j.biortech.2007.08.064

Pal, 2008, Microbial extracellular polymeric substances: central elements in heavy metal bioremediation, Indian J. Microbiol., 48, 49, 10.1007/s12088-008-0006-5

Lynch, 2005, Bioremediation - prospects for the future application of innovative applied biological research, Ann. Appl. Biol., 146, 217, 10.1111/j.1744-7348.2005.040115.x

Singh, 2004, Enhancement of metal bioremediation by use of microbial surfactants, Biochem. Biophys. Res. Commun., 319, 291, 10.1016/j.bbrc.2004.04.155

Sand, 2006, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Res. Microbiol., 157, 49, 10.1016/j.resmic.2005.07.012

Sheng, 2008, The influence of ionic strength, nutrients and pH on bacterial adhesion to metals, J. Colloid Interface Sci., 321, 256, 10.1016/j.jcis.2008.02.038

Suzuki, 2001, Microbial leaching of metals from sulfide minerals, Biotechnol. Adv., 19, 119, 10.1016/S0734-9750(01)00053-2

Rohwerder, 2003, Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol., 63, 239, 10.1007/s00253-003-1448-7

Kelly, 2000, Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov., Int. J. Syst. Evol. Microbiol., 50, 511, 10.1099/00207713-50-2-511

Bosecker, 1997, Bioleaching: metal solubilisation by microorganisms, FEMS Microbiol. Rev., 20, 591, 10.1111/j.1574-6976.1997.tb00340.x

Ehrlich, 2001, Past, present and future of biohydrometallurgy, Hydrometallurgy, 59, 127, 10.1016/S0304-386X(00)00165-1

Olson, 2003, Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries, Appl. Environ. Microbiol., 63, 249

Gehrke, 1998, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Appl. Environ. Microbiol., 64, 2743, 10.1128/AEM.64.7.2743-2747.1998

Barreto, 2005, Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans, Appl. Environ. Microbiol., 71, 2902, 10.1128/AEM.71.6.2902-2909.2005

Gehrke, 2001, The EPS of Acidithiobacillus ferrooxidans – a model for structure-function relationships of attached bacteria and their physiology, Water Sci. Technol., 43, 159, 10.2166/wst.2001.0365

Kinzler, 2003, Bioleaching—a result of interfacial processes caused by extracellular polymeric substances (EPS), Hydrometallurgy, 71, 83, 10.1016/S0304-386X(03)00176-2

Yu, 2008, EPS-contact-leaching mechanisms of chalcopyrite concentrates by A. ferrooxidans, Trans. Nonferrous Met. Soc. China, 18, 1427, 10.1016/S1003-6326(09)60020-0

Das, 1999, Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms, BioMetals, 12, 1, 10.1023/A:1009228210654

Zimmerley, 1958, Cyclic leaching process employing iron oxidizing bacteria, U.S. Pat. Off., 829, 964

Watling, 2006, The bioleaching of sulphide minerals with emphasis on copper sulphides -- A review, Hydrometallurgy, 84, 81, 10.1016/j.hydromet.2006.05.001

Devasia, 1993, Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces, Appl. Environ. Microbiol., 59, 4051, 10.1128/aem.59.12.4051-4055.1993

Escobar, 1997, Short Communication: Influence of lipopolysaccharides on the attachment of Thiobacillus ferrooxidans to minerals, World J. Microbiol. Biotechnol., 13, 593, 10.1023/A:1018585930229

Harneit, 2006, Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, Hydrometallurgy, 83, 245, 10.1016/j.hydromet.2006.03.044

Ghauri, 2007, Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations, Hydrometallurgy, 85, 72, 10.1016/j.hydromet.2006.03.016

Arredondo, 1994, Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids, Appl. Environ. Microbiol., 60, 2846, 10.1128/aem.60.8.2846-2851.1994

Sand, 2001, (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching, Hydrometallurgy, 59, 159, 10.1016/S0304-386X(00)00180-8

Vuong, 2004, A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence, J. Biol. Chem., 279, 54881, 10.1074/jbc.M411374200

Sanford, 1984, Microbial polysaccharides: New products and their commercial applications, Pure Appl. Chem., 56, 879, 10.1351/pac198456070879

Sutherland, 1998, Novel and established applications of microbial polysaccharides, Trends Biotechnol., 16, 41, 10.1016/S0167-7799(97)01139-6

Valla, 1998, Biosynthesis and applications of alginates, Polym. Degrad. Stab., 59, 85, 10.1016/S0141-3910(97)00179-1

Sutherland, 2001, Microbial polysaccharides from Gram-negative bacteria, Int. Dairy J., 11, 663, 10.1016/S0958-6946(01)00112-1

Garrity, G.M. (2001). Bergey's Manual of Systematic Bacteriology: The Archaea and the deeply branching and phototrophic bacteria, Springer-Verlag.

Gibbons, 1978, Proposals concerning the higher taxa of bacteria, Int. J. Syst. Bacteriol., 28, 1, 10.1099/00207713-28-1-1

Wolf, 2004, Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data, Int. J. Syst. Evol. Microbiol., 54, 871, 10.1099/ijs.0.02868-0

Naessens, 2005, Leuconostoc dextransucrase and dextran: production, properties and applications, J. Chem. Technol. Biotechnol., 80, 845, 10.1002/jctb.1322

Duboc, 2001, Applications of exopolysaccharides in the dairy industry, Int. Dairy J., 11, 759, 10.1016/S0958-6946(01)00119-4

Lapasin, R., and Pricl, S. (1999). Aspen Publishers.

Micheli, 1999, Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran, Appl. Environ. Microbiol., 53, 69

Piermaria, 2009, Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization, Food Hydrocolloid., 23, 684, 10.1016/j.foodhyd.2008.05.003

Garrity, G.M., Brenner, D.J., Krieg, N.R., and Staley, J.R. (2005). Springer - Verlag.

Jonas, 1998, Production and application of microbial cellulose, Polym. Degrad. Stab., 59, 101, 10.1016/S0141-3910(97)00197-3

2002, Molecular biology of cellulose production in bacteria, Res. Microbiol., 153, 205, 10.1016/S0923-2508(02)01316-5

Klemm, 2001, Bacterial synthesized cellulose -- artificial blood vessels for microsurgery, Prog. Polym. Sci., 26, 1561, 10.1016/S0079-6700(01)00021-1

Gummadi, 2005, Production of extracellular water insoluble β-1,3-glucan (curdlan) from Bacillus sp. SNC07, Biotechnol. Bioprocess Eng., 10, 546, 10.1007/BF02932292

Dumitriu, S. (2004). Polysaccharides: Structural diversity and functional versatility, CRC Press.

Jin, 2006, Conformation of curdlan as observed by tapping mode atomic force microscopy, Colloid Polym. Sci., 284, 1371, 10.1007/s00396-006-1503-x

Chandrasekaran, 1995, Molecular architectures and functional properties of gellan gum and related polysaccharides, Trends Food Sci. Technol., 6, 143, 10.1016/S0924-2244(00)89022-6

Witczak, Z.B., and Nieforth, K.A. (1997). Carbohydrates in Drug Design, Marcel Dekker.

Warda, 2003, Turkey intestine as a commercial source of heparin? Comparative structural studies of intestinal avian and mammalian glycosaminoglycans, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 134, 189, 10.1016/S1096-4959(02)00250-6

Kusche, 1991, Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions, Biochem. J., 275, 151, 10.1042/bj2750151

Wagner, 2009, Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS - Matrix, Water Res., 43, 63, 10.1016/j.watres.2008.10.034

Denkhaus, 2007, Chemical and physical methods for characterisation of biofilms, Microchim. Acta, 158, 1, 10.1007/s00604-006-0688-5

Wolf, 2002, Optical and spectroscopic methods for biofilm examination and monitoring, Rev. Environ. Sci. Biotechnol., 1, 227, 10.1023/A:1021238630092

Howell, 2008, Probing the extracellular matrix with sum-frequency-generation spectroscopy, Langmuir, 24, 13819, 10.1021/la8027463

Haisch, 2007, Visualisation of transient processes in biofilms by optical coherence tomography, Water Res., 41, 2467, 10.1016/j.watres.2007.03.017

Schmid, 2008, Towards chemical analysis of nanostructures in biofilms I: Imaging of biological nanostructures, Anal. Bioanal. Chem., 391, 1899, 10.1007/s00216-008-2100-2

Pradhan, 2008, Micro-Raman analysis and AFM imaging of Acidithiobacillus ferrooxidans biofilm grown on uranium ore, Res. Microbiol., 159, 557, 10.1016/j.resmic.2008.06.006

Mangold, 2008, Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite, Appl. Environ. Microbiol., 74, 410, 10.1128/AEM.01812-07

Xi, 2006, High-resolution three-dimensional imaging of biofilm development using optical coherence tomography, J. Biomed. Opt., 11, 034001, 10.1117/1.2209962

Shen, 1989, Surface properties probed by second-harmonic and sum-frequency generation, Nature, 337, 519, 10.1038/337519a0

Morita, 2000, A theoretical analysis of the sum frequency generation spectrum of the water surface, Chem. Phys., 258, 371, 10.1016/S0301-0104(00)00127-0

Shen, 1996, A few selected applications of surface nonlinear optical spectroscopy, Appl. Phys. Sci., 96, 12104