Backward-forward linear-quadratic mean-field games with major and minor agents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andersson, D, Djehiche, B: A maximum principle for SDEs of mean-field type, Appl. Math. Optim. 63, 341–356 (2011).
Antonelli, F: Backward-forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993).
Bardi, M: Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media. 7, 243–261 (2012).
Bensoussan, A, Sung, K, Yam, S, Yung, S: Linear-quadratic mean-field games. J. Optim. Theory Appl. 169, 496–529 (2016).
Bismut, J: An introductory approach to duality in optimal stochastic control. SIAM Rev. 20, 62–78 (1978).
Buckdahn, R, Cardaliaguet, P, Quincampoix, M: Some recent aspects of differential game theory. Dynam Games Appl. 1, 74–114 (2010).
Buckdahn, R, Djehiche, B, Li, J: A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64, 197–216 (2011).
Buckdahn, R, Djehiche, B, Li, J, Peng, S: Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37, 1524–1565 (2009a).
Buckdahn, R, Li, J, Peng, S: Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Process. Appl. 119, 3133–3154 (2009b).
Buckdahn, R, Li, J, Peng, S: Nonlinear stochastic differential games involving a major player and a large number of collectively acting minor agents. SIAM J. Control Optim. 52, 451–492 (2014).
Carmona, R, Delarue, F: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51, 2705–2734 (2013).
Cvitanić, J, Ma, J: Hedging options for a large investor and forward-backward SDE’s. Ann. Appl. Probab. 6, 370–398 (1996).
El Karoui, N, Peng, S, Quenez, M: Backward stochastic differential equations in finance. Math.Finance. 7, 1–71 (1997).
Espinosa, G, Touzi, N: Optimal investment under relative performance concerns. Math. Finance. 25, 221–257 (2015).
Guéant, O, Lasry, J-M, Lions, P-L: Mean field games and applications, Paris-Princeton lectures on mathematical finance. Springer, Berlin (2010).
Huang, M: Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 48, 3318–3353 (2010).
Huang, M, Caines, P, Malhamé, R: Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Autom. Control. 52, 1560–1571 (2007).
Huang, M, Caines, P, Malhamé, R: Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Autom. Control. 57, 1736–1751 (2012).
Huang, M, Malhamé, R, Caines, P: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–251 (2006).
Hu, Y, Peng, S: Solution of forwardbackward stochastic differential equations. Proba. Theory Rel. Fields. 103, 273–283 (1995).
Li, T, Zhang, J: Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Autom. Control. 53, 1643–1660 (2008).
Lim, E, Zhou, XY: Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40, 450–474 (2001).
Ma, J, Protter, P, Yong, J: Solving forward-backward stochastic differential equations explicitly-a four step scheme, Proba. Theory Rel. Fields. 98, 339–359 (1994).
Ma, J, Wu, Z, Zhang, D, Zhang, J: On well-posedness of forward-backward SDEs-a unified approach. Ann. Appl. Probab. 25, 2168–2214 (2015).
Ma, J, Yong, J: Forward-Backward Stochastic Differential Equations and Their Applications. Springer-Verlag, Berlin Heidelberg (1999).
Nguyen, S, Huang, M: Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50, 2907–2937 (2012).
Nourian, M, Caines, P: ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51, 3302–3331 (2013).
Pardoux, E, Peng, S: Adapted solution of backward stochastic equation. Syst. Control Lett. 14, 55–61 (1990).
Peng, S, Wu, Z: Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM. J. Control Optim. 37, 825–843 (1999).
Wang, G, Wu, Z: The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control. 54, 1230–1242 (2009).
Wu, Z: A general maximum principle for optimal control of forward-backward stochastic systems. Automatica. 49, 1473–1480 (2013).
Yong, J: Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Proba. Theory Rel. Fields. 107, 537–572 (1997).
Yong, J: Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48, 4119–4156 (2010).
Yong, J, Zhou, XY: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999).