Background Parenchymal Enhancement on Breast MRI: Assessment and Clinical Implications
Tóm tắt
To present recent literature regarding the assessment and clinical implications of background parenchymal enhancement on breast MRI. The qualitative assessment of BPE remains variable within the literature, as well as in clinical practice. Several different quantitative approaches have been investigated in recent years, most commonly region of interest-based and segmentation-based assessments. However, quantitative assessment has not become standard in clinical practice to date. Numerous studies have demonstrated a clear association between higher BPE and future breast cancer risk. While higher BPE does not appear to significantly impact cancer detection, it may result in a higher abnormal interpretation rate. BPE is also likely a marker of pathologic complete response after neoadjuvant chemotherapy, with decreases in BPE during and after neoadjuvant chemotherapy correlated with pCR. In contrast, pre-treatment BPE does not appear to be predictive of pCR. The association between BPE and prognosis is less clear, with heterogeneous results in the literature. Assessment of BPE continues to evolve, with heterogeneity in approaches to both qualitative and quantitative assessment. The level of BPE has important clinical implications, with associations with future breast cancer risk and treatment response. BPE may also be an imaging marker of prognosis, but future research is needed on this topic.
Tài liệu tham khảo
Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS® Magnetic Resonance Imaging. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology; 2013.
Giess CS, Yeh ED, Raza S, Birdwell RL. Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation. Radiographics. 2014;34(1):234–47. https://doi.org/10.1148/rg.341135034.
Li J, Dershaw DD, Lee CH, Joo S, Morris EA. Breast MRI after conservation therapy: usual findings in routine follow-up examinations. AJR Am J Roentgenol. 2010;195(3):799–807. https://doi.org/10.2214/AJR.10.4305.
Kuhl CK, Bieling HB, Gieseke J, Kreft BP, Sommer T, Lutterbey G, Schild HH. Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: normal contrast medium enhancement and cyclical-phase dependency. Radiology. 1997;203(1):137–44. https://doi.org/10.1148/radiology.203.1.9122382.
Jansen SA, Lin VC, Giger ML, Li H, Karczmar GS, Newstead GM. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol. 2011;21(7):1374–82. https://doi.org/10.1007/s00330-011-2080-z.
Müller-Schimpfle M, Ohmenhaüser K, Stoll P, Dietz K, Claussen CD. Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology. 1997;203(1):145–9. https://doi.org/10.1148/radiology.203.1.9122383.
Delille JP, Slanetz PJ, Yeh ED, Kopans DB, Garrido L. Physiologic changes in breast magnetic resonance imaging during the menstrual cycle: perfusion imaging, signal enhancement, and influence of the T1 relaxation time of breast tissue. Breast J. 2005;11(4):236–41. https://doi.org/10.1111/j.1075-122X.2005.21499.x.
de Kermadec E, Thomassin I, Daraï E, Kolanska K, Chabbert-Buffet N. Impact of the menstrual cycle on the quality of interpretation of the MRI result in the follow-up of women at genetic risk for breast. Gynecol Obstet Fertil Senol. 2021. https://doi.org/10.1016/j.gofs.2021.03.024.
•Lee CH, Bryce Y, Zheng J, Sung JS, Comstock CE, Moskowitz C, Morris AE. Outcome of Screening MRI in Premenopausal Women as a Function of the Week of the Menstrual Cycle. AJR Am J Roentgenol. 2020;214(5):1175–1181. https://doi.org/10.2214/AJR.18.19960. This study found no difference in BPE levels or performance metrics of screening MRI by week of the menstrual cycle during which the MRI was performed.
•Dontchos BN, Rahbar H, Partridge SC, Lehman CD, DeMartini WB. Influence of menstrual cycle timing on screening breast MRI background parenchymal enhancement and diagnostic performance in premenopausal women. J Breast Imaging. 2019;1(3):205-211. doi: https://doi.org/10.1093/jbi/wbz022. This study found no difference in BPE levels or performance metrics of screening MRI by menstrual cycle phase or week
Hellgren R, Saracco A, Strand F, Eriksson M, Sundbom A, Hall P, Dickman PW. The association between breast cancer risk factors and background parenchymal enhancement at dynamic contrast-enhanced breast MRI. Acta Radiol. 2020;61(12):1600–7. https://doi.org/10.1177/0284185120911583.
Li J, Mo Y, He B, Gao Q, Luo C, Peng C, Zhao W, Ma Y, Yang Y. Association between MRI background parenchymal enhancement and lymphovascular invasion and estrogen receptor status in invasive breast cancer. Br J Radiol. 2019;92(1103):20190417. https://doi.org/10.1259/bjr.20190417.
Arslan G, Çelik L, Çubuk R, Çelik L, Atasoy MM. Background parenchymal enhancement: is it just an innocent effect of estrogen on the breast? Diagn Interv Radiol. 2017;23(6):414–9. https://doi.org/10.5152/dir.2017.17048.
Gillman J, Chun J, Schwartz S, Schnabel F, Moy L. The relationship of obesity, mammographic breast density, and magnetic resonance imaging in patients with breast cancer. Clin Imaging. 2016;40(6):1167–72. https://doi.org/10.1016/j.clinimag.2016.08.009.
Kim EJ, Kang BJ, Kim SH, Youn IK, Baek JE, Lee HS. Diagnostic performance of and breast tissue changes at early breast MR imaging surveillance in women after breast conservation therapy. Radiology. 2017;284(3):656–66. https://doi.org/10.1148/radiol.2017162123.
Kim YJ, Kim SH, Choi BG, Kang BJ, Kim HS, Cha ES, Song BJ. Impact of radiotherapy on background parenchymal enhancement in breast magnetic resonance imaging. Asian Pac J Cancer Prev. 2014;15(7):2939–43. https://doi.org/10.7314/apjcp.2014.15.7.2939.
Ben-David MA, Corn BW, Evron E, Goldberg H, Pfeffer RM, Abdah-Bortnyak R, Matceyevsky D, Weinstein Y, Golan O, Sklair-Levy M. Prophylactic breast irradiation reduces background parenchymal enhancement (BPE) on MRI: a secondary analysis. Breast. 2020;49:70–3. https://doi.org/10.1016/j.breast.2019.10.011.
Zeng L, Lo G, Moshonov H, Liang J, Hodgson D, Crystal P. Breast background parenchymal enhancement on screening magnetic resonance imaging in women who received chest radiotherapy for childhood hodgkin’s lymphoma. Acad Radiol. 2016;23(2):168–75. https://doi.org/10.1016/j.acra.2015.09.010.
Bignotti B, Signori A, Valdora F, Rossi F, Calabrese M, Durando M, Mariscotto G, Tagliafico A. Evaluation of background parenchymal enhancement on breast MRI: a systematic review. Br J Radiol. 2017;90(1070):20160542. https://doi.org/10.1259/bjr.20160542.
Bignotti B, Calabrese M, Signori A, Tosto S, Valdora F, Tagliafico A, Durando M, Mariscotti G. Background parenchymal enhancement assessment: inter- and intra-rater reliability across breast MRI sequences. Eur J Radiol. 2019;114:57–61. https://doi.org/10.1016/j.ejrad.2019.02.036.
Wei D, Jahani N, Cohen E, Weinstein S, Hsieh MK, Pantalone L, Kontos D. Fully automatic quantification of fibroglandular tissue and background parenchymal enhancement with accurate implementation for axial and sagittal breast MRI protocols. Med Phys. 2021;48(1):238–52. https://doi.org/10.1002/mp.14581.
Nguyen AA, Arasu VA, Strand F, Li W, Onishi N, Gibbs J, Jones EF, Joe BN, Esserman LJ, Newitt DC, Hylton NM. Comparison of segmentation methods in assessing background parenchymal enhancement as a biomarker for response to neoadjuvant therapy. Tomography. 2020;6(2):101–10. https://doi.org/10.18383/j.tom.2020.00009.
van der Velden BHM, van Rijssel MJ, Lena B, Philippens MEP, Loo CE, Ragusi MAA, Elias SG, Sutton EJ, Morris EA, Bartels LW, Gilhuijs KGA. Harmonization of quantitative parenchymal enhancement in T1 -weighted breast MRI. J Magn Reson Imaging. 2020;52(5):1374–82. https://doi.org/10.1002/jmri.27244.
Losurdo L, Basile TMA, Fanizzi A, Bellotti R, Bottigli U, Carbonara R, Dentamaro R, Diacono D, Didonna V, Lombardi A, Giotta F, Guaragnella C, Mangia A, Massafra R, Tamborra P, Tangaro S, La Forgia D. A gradient-based approach for breast DCE-MRI analysis. Biomed Res Int. 2018;16(2018):9032408. https://doi.org/10.1155/2018/9032408.
Amano Y, Woo J, Amano M, Yanagisawa F, Yamamoto H, Tani M. MRI texture analysis of background parenchymal enhancement of the breast. Biomed Res Int. 2017;2017:4845909. https://doi.org/10.1155/2017/4845909.
Ha R, Mema E, Guo X, Mango V, Desperito E, Ha J, Wynn R, Zhao B. Three-dimensional quantitative validation of breast magnetic resonance imaging background parenchymal enhancement assessments. Curr Probl Diagn Radiol. 2016;45(5):297–303. https://doi.org/10.1067/j.cpradiol.2016.02.003.
Ma X, Wang J, Zheng X, Liu Z, Long W, Zhang Y, Wei J, Lu Y. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Phys Med Biol. 2020;65(10):105006. https://doi.org/10.1088/1361-6560/ab7e7f.
Fashandi H, Kuling G, Lu Y, Wu H, Martel AL. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Med Phys. 2019;46(3):1230–44. https://doi.org/10.1002/mp.13375.
Veeraraghavan H, Dashevsky BZ, Onishi N, Sadinski M, Morris E, Deasy JO, Sutton EJ. Appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: a feasibility study. Sci Rep. 2018;8(1):4838. https://doi.org/10.1038/s41598-018-22980-9.
Jiang L, Hu X, Xiao Q, Gu Y, Li Q. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast-enhanced MR images. Med Phys. 2017;44(6):2400–14. https://doi.org/10.1002/mp.12254.
Nam Y, Park GE, Kang J, Kim SH. Fully automatic assessment of background parenchymal enhancement on breast MRI using machine-learning models. J Magn Reson Imaging. 2021;53(3):818–26. https://doi.org/10.1002/jmri.27429.
Borkowski K, Rossi C, Ciritsis A, Marcon M, Hejduk P, Stieb S, Boss A, Berger N. Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach. Medicine (Baltimore). 2020;99(29):e21243. https://doi.org/10.1097/MD.0000000000021243.
Xu X, Fu L, Chen Y, Larsson R, Zhang D, Suo S, Hua J, Zhao J. Breast region segmentation being convolutional neural network in dynamic contrast enhanced MRI. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:750–3. https://doi.org/10.1109/EMBC.2018.8512422.
Ha R, Chang P, Mema E, Mutasa S, Karcich J, Wynn RT, Liu MZ, Jambawalikar S. Fully Automated convolutional neural network method for quantification of breast MRI fibroglandular tissue and background parenchymal enhancement. J Digit Imaging. 2019;32(1):141–7. https://doi.org/10.1007/s10278-018-0114-7.
Tomida T, Urikura A, Uematsu T, Shirata K, Nakaya Y. Contrast enhancement in breast cancer and background mammary-gland tissue during the super-early phase of dynamic breast magnetic resonance imaging. Acad Radiol. 2017;24(11):1380–6. https://doi.org/10.1016/j.acra.2017.05.018.
Honda M, Kataoka M, Iima M, Miyake KK, Ohashi A, Kishimoto AO, Ota R, Nickel MD, Toi M, Togashi K. Background parenchymal enhancement and its effect on lesion detectability in ultrafast dynamic contrast-enhanced MRI. Eur J Radiol. 2020;129:108984. https://doi.org/10.1016/j.ejrad.2020.108984.
Kim SY, Cho N, Choi Y, Shin SU, Kim ES, Lee SH, Chang JM, Moon WK. Ultrafast dynamic contrast-enhanced breast MRI: Lesion conspicuity and size assessment according to background parenchymal enhancement. Korean J Radiol. 2020;21(5):561–71. https://doi.org/10.3348/kjr.2019.0567.
Pineda FD, Medved M, Wang S, Fan X, Schacht DV, Sennett C, Oto A, Newstead GM, Abe H, Karczmar GS. Ultrafast bilateral DCE-MRI of the breast with conventional fourier sampling: preliminary evaluation of semi-quantitative analysis. Acad Radiol. 2016;23(9):1137–44. https://doi.org/10.1016/j.acra.2016.04.008.
Shiraishi M, Igarashi T, Terayama T, Watanabe K, Ashida H, Ojiri H. Breast magnetic resonance imaging for estimation of the tumour extent in patients with pure ductal carcinoma in situ: comparison between full diagnostic and abbreviated protocols. Eur J Radiol. 2020;123:108788. https://doi.org/10.1016/j.ejrad.2019.108788.
•Watt GP, Sung J, Morris EA, Buys SS, Bradbury AR, Brooks JD, Conant EF, Weinstein SP, Kontos D, Woods M, Colonna SV, Liang X, Stein MA, Pike MC, Bernstein JL. Association of breast cancer with MRI background parenchymal enhancement: the IMAGINE case-control study. Breast Cancer Res. 2020;22(1):138. https://doi.org/10.1186/s13058-020-01375-7. This study demonstrated an association between moderate or marked BPE and premenopausal breast cancer after adjusting for multiple risk factors and confounders.
•Arasu VA, Miglioretti DL, Sprague BL, Alsheik NH, Buist DSM, Henderson LM, Herschorn SD, Lee JM, Onega T, Rauscher GH, Wernli KJ, Lehman CD, Kerlikowske K. Population-based assessment of the association between magnetic resonance imaging background parenchymal enhancement and future primary breast cancer risk. J Clin Oncol. 2019;37(12):954–963. https://doi.org/10.1200/JCO.18.00378. This study demonstrated an association between BPE and future breast cancer risk independent of breast density.
Hu N, Zhao J, Li Y, Fu Q, Zhao L, Chen H, Qin W, Yang G. Breast cancer and background parenchymal enhancement at breast magnetic resonance imaging: a meta-analysis. BMC Med Imaging. 2021;21(1):32. https://doi.org/10.1186/s12880-021-00566-8.
Zhang H, Guo L, Tao W, Zhang J, Zhu Y, Abdelrahim MEA, Bai G. Possible breast cancer risk related to background parenchymal enhancement at breast MRI: a meta-analysis study. Nutr Cancer. 2021;73(8):1371–7. https://doi.org/10.1080/01635581.2020.1795211.
Saha A, Grimm LJ, Ghate SV, Kim CE, Soo MS, Yoon SC, Mazurowski MA. Machine learning-based prediction of future breast cancer using algorithmically measured background parenchymal enhancement on high-risk screening MRI. J Magn Reson Imaging. 2019;50(2):456–64. https://doi.org/10.1002/jmri.26636.
•Thompson CM, Mallawaarachchi I, Dwivedi DK, Ayyappan AP, Shokar NK, Lakshmanaswamy R, Dwivedi AK. The association of background parenchymal enhancement at breast MRI with breast cancer: a systematic review and meta-analysis. Radiology. 2019;292(3):552–561. https://doi.org/10.1148/radiol.2019182441. Systematic review and meta-analysis showing that higher BPE is associated with the presence of breast cancer in women with an elevated lifetime risk of breast cancer but not in women with average risk.
Grimm LJ, Saha A, Ghate SV, Kim C, Soo MS, Yoon SC, Mazurowski MA. Relationship between background parenchymal enhancement on high-risk screening MRI and future breast cancer risk. Acad Radiol. 2019;26(1):69–75. https://doi.org/10.1016/j.acra.2018.03.013.
Bermot C, Saint-Martin C, Malhaire C, Sebbag-Sfez D, Mouret-Fourme E, Carton M, Thibault FE. Background parenchymal enhancement and fibroglandular tissue on breast MRI in women with high genetic risk: are changes before and after risk-reducing salpingo-oophorectomy associated with breast cancer risk? Eur J Radiol. 2018;109:171–7. https://doi.org/10.1016/j.ejrad.2018.10.030.
DeLeo MJ 3rd, Domchek SM, Kontos D, Conant E, Chen J, Weinstein S. Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1 and BRCA2 mutation carriers before and immediately after risk-reducing salpingo-oophorectomy. AJR Am J Roentgenol. 2015;204(3):669–73. https://doi.org/10.2214/AJR.13.12146.
Kim GR, Cho N, Kim SY, Han W, Moon WK. Interval cancers after negative supplemental screening breast MRI results in women with a personal history of breast cancer. Radiology. 2021;300(2):314–23. https://doi.org/10.1148/radiol.2021203074.
Liu K, Zhang W, Dai Z, Wang M, Tian T, Liu X, Kang H, Guan H, Zhang S, Dai Z. Association between body mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer Manag Res. 2018;18(10):143–51. https://doi.org/10.2147/CMAR.S144619.
Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404. https://doi.org/10.1152/physrev.00033.2011.
Brown JC, Kontos D, Schnall MD, Wu S, Schmitz KH. The dose-response effects of aerobic exercise on body composition and breast tissue among women at high risk for breast cancer: a randomized trial. Cancer Prev Res (Phila). 2016;9(7):581–8. https://doi.org/10.1158/1940-6207.CAPR-15-0408.
An YS, Jung Y, Kim JY, Han S, Kang DK, Park SY, Kim TH. Metabolic activity of normal glandular tissue on 18F-fluorodeoxyglucose positron emission tomography/computed tomography: correlation with menstrual cycles and parenchymal enhancements. J Breast Cancer. 2017;20(4):386–92. https://doi.org/10.4048/jbc.2017.20.4.386.
Mema E, Mango VL, Guo X, Karcich J, Yeh R, Wynn RT, Zhao B, Ha RS. Does breast MRI background parenchymal enhancement indicate metabolic activity? qualitative and 3D quantitative computer imaging analysis. J Magn Reson Imaging. 2018;47(3):753–9. https://doi.org/10.1002/jmri.25798.
Choi BB, Kim SH, Park CS, Jung NY. Correlation of prognostic factors of invasive lobular carcinoma with ADC value of DWI and SUVMax of FDG-PET. Chonnam Med J. 2017;53(2):133–9. https://doi.org/10.4068/cmj.2017.53.2.133.
Leithner D, Baltzer PA, Magometschnigg HF, Wengert GJ, Karanikas G, Helbich TH, Weber M, Wadsak W, Pinker K. Quantitative assessment of breast parenchymal uptake on 18F-FDG PET/CT: correlation with age, background parenchymal enhancement, and amount of fibroglandular tissue on MRI. J Nucl Med. 2016;57(10):1518–22. https://doi.org/10.2967/jnumed.116.174904.
•Sippo DA, Rutledge GM, Mercaldo SF, Burk KS, Edmonds CE, Dang PA, Lehman CD. Impact of background parenchymal enhancement on diagnostic performance in screening breast MRI. Acad Radiol. 2020;27(5):663-671. https://doi.org/10.1016/j.acra.2019.06.020. This study found that moderate or marked BPE on screening MRI resulted in a higher abnormal interpretation rate but did not significantly impact other performance metrics including cancer detection rate.
Preibsch H, Beckmann J, Pawlowski J, Kloth C, Hahn M, Staebler A, Wietek BM, Nikolaou K, Wiesinger B. Accuracy of breast magnetic resonance imaging compared to mammography in the preoperative detection and measurement of pure ductal carcinoma in situ: a retrospective analysis. Acad Radiol. 2019;26(6):760–5. https://doi.org/10.1016/j.acra.2018.07.013.
•Ray KM, Kerlikowske K, Lobach IV, Hofmann MB, Greenwood HI, Arasu VA, Hylton NM, Joe BN. Effect of background parenchymal enhancement on breast MR Imaging interpretive performance in community-based practices. Radiology. 2018;286(3):822–829. https://doi.org/10.1148/radiol.2017170811. This study found that moderate or marked BPE was associated with higher abnormal interpretation rate, higher biopsy rate, and lower specificity with no difference in cancer detection rate.
Kim SY, Lee HS, Kim EK, Kim MJ, Moon HJ, Yoon JH. Effect of background parenchymal enhancement on pre-operative breast magnetic resonance imaging: how it affects interpretation and the role of second-look ultrasound in patient management. Ultrasound Med Biol. 2016;42(12):2766–74. https://doi.org/10.1016/j.ultrasmedbio.2016.08.008.
Taron J, Fleischer S, Preibsch H, Nikolaou K, Gruber I, Bahrs S. Background parenchymal enhancement in pregnancy-associated breast cancer: a hindrance to diagnosis? Eur Radiol. 2019;29(3):1187–93. https://doi.org/10.1007/s00330-018-5721-7.
Oh SW, Lim HS, Moon SM, Kim JW, Shin SS, Heo SH, Lee JS, Park MH. MR imaging characteristics of breast cancer diagnosed during lactation. Br J Radiol. 2017;90(1078):20170203. https://doi.org/10.1259/bjr.20170203.
Yoon J, Kim EK, Kim MJ, Moon HJ, Yoon JH, Park VY. Preoperative magnetic resonance imaging features associated with positive resection margins in patients with invasive lobular carcinoma. Korean J Radiol. 2020;21(8):946–54. https://doi.org/10.3348/kjr.2019.0674.
Preibsch H, Richter V, Bahrs SD, Hattermann V, Wietek BM, Bier G, Kloth C, Blumenstock G, Hahn M, Staebler A, Nikolaou K, Wiesinger B. Repeated surgeries in invasive lobular breast cancer with preoperative MRI: role of additional carcinoma in situ and background parenchymal enhancement. Eur J Radiol. 2017;90:181–7. https://doi.org/10.1016/j.ejrad.2017.02.045.
Bae MS, Bernard-Davila B, Sung JS, Morris EA. Preoperative breast MRI features associated with positive or close margins in breast-conserving surgery. Eur J Radiol. 2019;117:171–7. https://doi.org/10.1016/j.ejrad.2019.06.011.
Lim Y, Ko ES, Han BK, Ko EY, Choi JS, Lee JE, Lee SK. Background parenchymal enhancement on breast MRI: association with recurrence-free survival in patients with newly diagnosed invasive breast cancer. Breast Cancer Res Treat. 2017;163(3):573–86. https://doi.org/10.1007/s10549-017-4217-5.
Park G, Bae K, Hwang IY, Kim JS, Kwon WJ, Bang M. Prediction of residual malignancy after excisional biopsy for breast cancer with suspicious microcalcifications: comparison of mammography and magnetic resonance imaging. Clin Breast Cancer. 2019;19(6):e753–8. https://doi.org/10.1016/j.clbc.2019.05.003.
Baek SH, Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY. Comparison of mammography, ultrasound, and MRI in size assessment of ductal carcinoma in situ with histopathologic correlation. Acta Radiol. 2017;58(12):1434–41. https://doi.org/10.1177/0284185117698860.
Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY. The accuracy of breast MR imaging for measuring the size of a breast cancer: analysis of the histopathologic factors. Clin Breast Cancer. 2016;16(6):e145–52. https://doi.org/10.1016/j.clbc.2016.07.007.
•Rella R, Contegiacomo A, Bufi E, Mercogliano S, Belli P, Manfredi R. Background parenchymal enhancement and breast cancer: a review of the emerging evidences about its potential use as imaging biomarker. Br J Radiol. 2021;94(1119):20200630. https://doi.org/10.1259/bjr.20200630. Systemic review on BPE as an imaging biomarker.
Kim SY, Cho N, Choi Y, Lee SH, Ha SM, Kim ES, Chang JM, Moon WK. Factors affecting pathologic complete response following neoadjuvant chemotherapy in breast cancer: development and validation of a predictive nomogram. Radiology. 2021;299(2):290–300. https://doi.org/10.1148/radiol.2021203871.
Kim SY, Cho N, Shin SU, Lee HB, Han W, Park IA, Kwon BR, Kim SY, Lee SH, Chang JM, Moon WK. Contrast-enhanced MRI after neoadjuvant chemotherapy of breast cancer: lesion-to-background parenchymal signal enhancement ratio for discriminating pathological complete response from minimal residual tumour. Eur Radiol. 2018;28(7):2986–95. https://doi.org/10.1007/s00330-017-5251-8.
Arasu VA, Kim P, Li W, Strand F, McHargue C, Harnish R, Newitt DC, Jones EF, Glymour MM, Kornak J, Esserman LJ, Hylton NM, ISPY2 investigators. Predictive value of breast MRI background parenchymal enhancement for neoadjuvant treatment response among HER2- patients. J Breast Imaging. 2020;2(4):352–60. https://doi.org/10.1093/jbi/wbaa028.
You C, Gu Y, Peng W, Li J, Shen X, Liu G, Peng W. Decreased background parenchymal enhancement of the contralateral breast after two cycles of neoadjuvant chemotherapy is associated with tumor response in HER2-positive breast cancer. Acta Radiol. 2018;59(7):806–12. https://doi.org/10.1177/0284185117738560.
You C, Peng W, Zhi W, He M, Liu G, Xie L, Jiang L, Hu X, Shen X, Gu Y. Association between background parenchymal enhancement and pathologic complete remission throughout the neoadjuvant chemotherapy in breast cancer patients. Transl Oncol. 2017;10(5):786–92. https://doi.org/10.1016/j.tranon.2017.07.005.
Dong JM, Wang HX, Zhong XF, Xu K, Bian J, Feng Y, Chen L, Zhang L, Wang X, Ma DJ, Wang B. Changes in background parenchymal enhancement in HER2-positive breast cancer before and after neoadjuvant chemotherapy: association with pathologic complete response. Medicine (Baltimore). 2018;97(43):e12965. https://doi.org/10.1097/MD.0000000000012965.
Moliere S, Oddou I, Noblet V, Veillon F, Mathelin C. Quantitative background parenchymal enhancement to predict recurrence after neoadjuvant chemotherapy for breast cancer. Sci Rep. 2019;9(1):19185. https://doi.org/10.1038/s41598-019-55820-5.
Oh SJ, Chae EY, Cha JH, Shin HJ, Choi WJ, Kim HH. Relationship between background parenchymal enhancement on breast MRI and pathological tumor response in breast cancer patients receiving neoadjuvant chemotherapy. Br J Radiol. 2018;91(1088):20170550. https://doi.org/10.1259/bjr.20170550.
Hilal T, Covington M, Kosiorek HE, Zwart C, Ocal IT, Pockaj BA, Northfelt DW, Patel BK. Breast MRI phenotype and background parenchymal enhancement may predict tumor response to neoadjuvant endocrine therapy. Breast J. 2018;24(6):1010–4. https://doi.org/10.1111/tbj.13101.
Zhang M, Sadinski M, Haddad D, Bae MS, Martinez D, Morris EA, Gibbs P, Sutton EJ. Background parenchymal enhancement on breast MRI as a prognostic surrogate: correlation with breast cancer oncotype Dx score. Front Oncol. 2021;4(10):595820. https://doi.org/10.3389/fonc.2020.595820.
Bae MS, Chang JM, Cho N, Han W, Ryu HS, Moon WK. Association of preoperative breast MRI features with locoregional recurrence after breast conservation therapy. Acta Radiol. 2018;59(4):409–17. https://doi.org/10.1177/0284185117723041.
Choi EJ, Choi H, Choi SA, Youk JH. Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer. Medicine (Baltimore). 2016;95(48):e5330. https://doi.org/10.1097/MD.0000000000005330.
Luo J, Johnston BS, Kitsch AE, Hippe DS, Korde LA, Javid S, Lee JM, Peacock S, Lehman CD, Partridge SC, Rahbar H. Ductal carcinoma in situ: quantitative preoperative breast mr imaging features associated with recurrence after treatment. Radiology. 2017;285(3):788–97. https://doi.org/10.1148/radiol.2017170587.
Choi JS, Ko ES, Ko EY, Han BK, Nam SJ. Background parenchymal enhancement on preoperative magnetic resonance imaging: association with recurrence-free survival in breast cancer patients treated with neoadjuvant chemotherapy. Medicine (Baltimore). 2016;95(9):e3000. https://doi.org/10.1097/MD.0000000000003000.
Lo Gullo R, Daimiel I, Rossi Saccarelli C, Bitencourt A, Sevilimedu V, Martinez DF, Jochelson MS, Morris EA, Reiner JS, Pinker K. MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival. Breast Cancer Res. 2020;22(1):93. https://doi.org/10.1186/s13058-020-01329-z.
Lee YJ, Youn IK, Kim SH, Kang BJ, Park WC, Lee A. Triple-negative breast cancer: pretreatment magnetic resonance imaging features and clinicopathological factors associated with recurrence. Magn Reson Imaging. 2020;66:36–41. https://doi.org/10.1016/j.mri.2019.10.001.
Ha R, Mango V, Al-Khalili R, Mema E, Friedlander L, Desperito E, Wynn RT. Evaluation of association between degree of background parenchymal enhancement on MRI and breast cancer subtype. Clin Imaging. 2018;51:307–10. https://doi.org/10.1016/j.clinimag.2018.05.008.
Vreemann S, Gubern-Mérida A, Borelli C, Bult P, Karssemeijer N, Mann RM. The correlation of background parenchymal enhancement in the contralateral breast with patient and tumor characteristics of MRI-screen detected breast cancers. PLoS One. 2018;13(1):e0191399. https://doi.org/10.1371/journal.pone.0191399.
Öztürk M, Polat AV, Süllü Y, Tomak L, Polat AK. Background parenchymal enhancement and fibroglandular tissue proportion on breast MRI: correlation with hormone receptor expression and molecular subtypes of breast cancer. J Breast Health. 2017;13(1):27–33. https://doi.org/10.5152/tjbh.2016.3247.
Mema E, Schnabel F, Chun J, Kaplowitz E, Price A, Goodgal J, Moy L. The relationship of breast density in mammography and magnetic resonance imaging in women with triple negative breast cancer. Eur J Radiol. 2020;124:108813. https://doi.org/10.1016/j.ejrad.2020.108813.
Wu J, Sun X, Wang J, Cui Y, Kato F, Shirato H, Ikeda DM, Li R. Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: model discovery and external validation. J Magn Reson Imaging. 2017;46(4):1017–27. https://doi.org/10.1002/jmri.25661.
Xu C, Yu J, Wu F, Li X, Hu D, Chen G, Wu G. High-background parenchymal enhancement in the contralateral breast is an imaging biomarker for favorable prognosis in patients with triple-negative breast cancer treated with chemotherapy. Am J Transl Res. 2021;13(5):4422–36.
Park VY, Kim EK, Kim MJ, Yoon JH, Moon HJ. Breast parenchymal signal enhancement ratio at preoperative magnetic resonance imaging: association with early recurrence in triple-negative breast cancer patients. Acta Radiol. 2016;57(7):802–8. https://doi.org/10.1177/0284185115609803.
Shin GW, Zhang Y, Kim MJ, Su MY, Kim EK, Moon HJ, Yoon JH, Park VY. Role of dynamic contrast-enhanced MRI in evaluating the association between contralateral parenchymal enhancement and survival outcome in ER-positive, HER2-negative, node-negative invasive breast cancer. J Magn Reson Imaging. 2018;48(6):1678–89. https://doi.org/10.1002/jmri.26176.
van der Velden BH, Dmitriev I, Loo CE, Pijnappel RM, Gilhuijs KG. Association between parenchymal enhancement of the contralateral breast in dynamic contrast-enhanced MR imaging and outcome of patients with unilateral invasive breast cancer. Radiology. 2015;276(3):675–85 . https://doi.org/10.1148/radiol.15142192.