Backbone and side chain NMR assignment of the heme-nitric oxide/oxygen binding (H-NOX) domain from Nostoc punctiforme

Biomolecular NMR Assignments - Tập 16 - Trang 379-384 - 2022
Styliani A. Chasapi1, Aikaterini I. Argyriou1, Georgios A. Spyroulias1
1Department of Pharmacy, University of Patras, Patras, Greece

Tóm tắt

Soluble guanylate cyclase (sGC) is considered as the primary NO receptor across several known eukaryotes. The main interest regarding the biological role and its function, focuses on the H-NOX domain of the β1 subunit. This domain in its active form bears a ferrous b type heme as prosthetic group, which facilitates the binding of NO and other diatomic gases. The key point that still needs to be answered is how the protein selectively binds the NO and how the redox state of heme and coordination determines H-NOX active state upon binding of diatomic gases. H-NOX domain is present in the genomes of both prokaryotes and eukaryotes, either as a stand-alone protein domain or as a partner of a larger polypeptide. The biological functions of these signaling modules for a wide range of genomes, diverge considerably along with their ligand binding properties. In this direction, we examine the prokaryotic H-NOX protein domain from Nostoc punctiforme (Npun H-NOX). Herein, we first report the almost complete NMR backbone and side-chain resonance assignment (1H, 13C, 15 N) of Npun H-NOX domain together with the NMR chemical shift-based prediction of the domain’s secondary structure elements.

Tài liệu tham khảo

Alexandropoulos II, Argyriou AI, Marousis KD, Topouzis S, Papapetropoulos A, Spyroulias GA (2016) 1H, 13C, 15N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme–nitric oxide/oxygen binding (H-NOX) domain. Biomol NMR Assign 10:395–400. https://doi.org/10.1007/s12104-016-9707-6 Argyriou AI, Makrynitsa GI, Dalkas G, Georgopoulou DA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA (2021) Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity. Curr Res Struct Biol 3:324–336. https://doi.org/10.1016/j.crstbi.2021.11.003 Bax AD, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138. https://doi.org/10.1021/ar00028a001B Boon EM, Marletta MA (2005) Ligand specificity of H-NOX domains: from sGC to bacterial NO sensors. J Inorg Biochem 99:892–902. https://doi.org/10.1016/j.jinorgbio.2004.12.016 Boon EM, Davis JH, Tran R, Karow DS, Huang SH, Pan D, Miazgowicz MM, Mathies RA, Marletta MA (2006) Nitric oxide binding to prokaryotic homologs of the soluble guanylate cyclase β1 H-NOX domain. J Biol Chem 281:21892–21902. https://doi.org/10.1074/jbc.M600557200 Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR (2021) Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 30:448–463. https://doi.org/10.1002/pro.4005 Dai Z, Farquhar ER, Arora DP, Boon EM (2012) Is histidine dissociation a critical component of the NO/H-NOX signaling mechanism? Insights from X-ray absorption spectroscopy. Dalton Trans 41:7984–7993. https://doi.org/10.1039/C2DT30147D Davis AL, Keeler J, Laue ED, Moskau D (1992) Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients. J Magn Reson (1969) 98:207–216. https://doi.org/10.1016/0022-2364(92)90126-R Erbil WK, Price MS, Wemmer DE, Marletta MA (2009) A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation. Proc Natl Acad Sci 106:19753–19760. https://doi.org/10.1073/pnas.0911645106 Guo Y, Cooper MM, Bromberg R, Marletta MA (2018) A dual-H-NOX Signaling system in Saccharophagus degradans. Biochemistry 57:6570–6580. https://doi.org/10.1021/acs.biochem.8b01058 Herzik MA, Jonnalagadda R, Kuriyan J, Marletta MA (2014) Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins. Proc Natl Acad Sci 111:E4156–E4164. https://doi.org/10.1073/pnas.1416936111 Karow DS, Pan D, Tran R, Pellicena P, Presley A, Mathies RA, Marletta MA (2004) Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis. Biochemistry 43:10203–10211. https://doi.org/10.1021/bi049374l Keller R (2004) The computer aided resonance assignment tutorial CH-6410. Cantina Verlag, Goldau Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490. https://doi.org/10.1016/S0968-0004(97)01140-7 Makrynitsa GI, Zompra AA, Argyriou AI, Spyroulias GA, Topouzis S (2019) Therapeutic targeting of the soluble guanylate cyclase. Curr Med Chem 26:2730–2747. https://doi.org/10.2174/0929867326666190108095851 Makrynitsa GI, Argyriou AI, Dalkas G, Georgopoulou DA, Bantzi M, Giannis A, Papapetropoulos A, Spyroulias GA (2021) Backbone and side chain NMR assignments of the H-NOX domain from Nostoc sp. in complex with BAY58-2667 (cinaciguat). Biomol NMR Assign 15:53–57. https://doi.org/10.1007/s12104-020-09991-2 Makrynitsa G, Argyriou AI, Zompra AA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA (2022) Mapping of the sGC stimulator BAY 41–2272 binding site on H-NOX domain and its regulation by the redox state of the heme. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.925457 Mayer B, Koesling D (2001) cGMP signalling beyond nitric oxide. Trends Pharmacol Sci 22:546–548. https://doi.org/10.1016/S0165-6147(00)01889-7 Nioche P, Berka V, Vipond J, Minton N, Tsai A-L, Raman C (2004) Femtomolar sensitivity of a NO sensor from Clostridium botulinum. Science 306:1550–1553. https://doi.org/10.1126/science.1103596 Papapetropoulos A, Hobbs AJ, Topouzis S (2015) Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 172:1397–1414. https://doi.org/10.1111/bph.12980 Pellicena P, Karow DS, Boon EM, Marletta MA, Kuriyan J (2004) Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc Natl Acad Sci 101:12854–12859. https://doi.org/10.1073/pnas.0405188101 Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46:449–460. https://doi.org/10.1016/j.molcel.2012.03.023 Schubert M, Labudde D, Oschkinat H, Schmieder P (2002) A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR 24:149–154. https://doi.org/10.1023/A:1020997118364 Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. https://doi.org/10.1007/s10858-009-9333-z Stone JR, Marletta MA (1996) Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35:1093–1099. https://doi.org/10.1021/bi9519718 Tsai AL, Martin E, Berka V, Olson JS (2012) How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c′, Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. ARS 17:1246–1263. https://doi.org/10.1089/ars.2012.4564 Zhang O, Forman-Kay JD, Shortle D, Kay LE (1997) Triple-resonance NOESY-based experiments with improved spectral resolution: applications to structural characterization of unfolded, partially folded and folded proteins. J Biomol NMR 9:181–200