Quay trở lại với cây: vượt qua rào cản trong việc sản xuất các sản phẩm tự nhiên từ thực vật có giá trị dược phẩm bằng vi sinh vật

Oxford University Press (OUP) - Tập 47 Số 9-10 - Trang 815-828 - 2020
Natali Ozber1, Jacinta L. Watkins1, Peter J. Facchini1
1grid.22072.35 0000 0004 1936 7697 Department of Biological Sciences University of Calgary T2N 1N4 Calgary AB Canada

Tóm tắt

Tóm tắt

Các nền tảng lên men vi sinh vật cung cấp một giải pháp thay thế tiết kiệm chi phí và bền vững cho việc trồng cây và tổng hợp hóa học trong sản xuất nhiều loại dược phẩm có nguồn gốc thực vật. Các alcaloid thực vật, đặc biệt là alcaloid benzylisoquinoline và alcaloid indole monoterpene, cùng với các cannabinoid gần đây đã trở thành mục tiêu hấp dẫn cho quá trình sinh tổng hợp vi sinh vật nhờ vào tầm quan trọng trong y học của chúng. Những tiến bộ gần đây trong việc phát hiện các thành phần của con đường sinh hóa, cùng với việc ứng dụng các công cụ sinh học tổng hợp, đã tạo điều kiện cho việc lắp ráp các con đường sinh tổng hợp alcaloid thực vật và cannabinoid trong các chủ thể vi sinh vật Escherichia coli và Saccharomyces cerevisiae. Bài tổng quan này làm nổi bật các khía cạnh chính của các con đường này trong khuôn khổ vượt qua các rào cản trong sản xuất vi sinh vật để cải thiện thêm nồng độ sản phẩm cuối cùng. Chúng tôi thảo luận về những cơ hội xuất hiện từ việc hiểu rõ hơn về các thành phần của các con đường thông qua việc nghiên cứu thêm về thực vật, và các chiến lược để tạo ra các hợp chất dược liệu mới và nâng cao.

Từ khóa

#các sản phẩm tự nhiên từ thực vật #alcaloid #cannabinoid #sinh tổng hợp vi sinh vật #Escherichia coli #Saccharomyces cerevisiae #sinh học tổng hợp #dược phẩm

Tài liệu tham khảo

Newman, 2020, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J Nat Prod, 83, 770, 10.1021/acs.jnatprod.9b01285

Martino, 2018, Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead, Bioorg Med Chem Lett, 28, 2816, 10.1016/j.bmcl.2018.06.044

Andre, 2016, Cannabis sativa: the plant of the thousand and one molecules, Front Plant Sci, 7, 19, 10.3389/fpls.2016.00019

Paddon, 2014, Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nat Rev Microbiol, 12, 355, 10.1038/nrmicro3240

Singh, 2019, Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update, Phytochem Rev, 18, 1457, 10.1007/s11101-019-09644-w

Pyne, 2019, Engineering plant secondary metabolism in microbial systems, Plant Physiol, 179, 844, 10.1104/pp.18.01291

Cravens, 2019, Synthetic biology strategies for microbial biosynthesis of plant natural products, Nat Commun, 10, 1, 10.1038/s41467-019-09848-w

Chen, 2020, Advanced strategies for production of natural products in yeast, iScience, 23, 100879, 10.1016/j.isci.2020.100879

Birchfield, 2020, Metabolic engineering and synthetic biology of plant natural products—a minireview, Curr Plant Biol, 10.1016/j.cpb.2020.100163

Facchini, 2003, Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy, Phytochemistry, 64, 177, 10.1016/S0031-9422(03)00292-9

Ounaroon, 2003, (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum – cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy, Plant J, 36, 808, 10.1046/j.1365-313X.2003.01928.x

Frick, 2007, Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding, Metab Eng, 9, 169, 10.1016/j.ymben.2006.10.004

Ziegler, 2005, Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis, Planta, 222, 458, 10.1007/s00425-005-1550-4

Farrow, 2015, Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy, Nat Chem Biol, 11, 728, 10.1038/nchembio.1879

Winzer, 2015, Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein, Science, 349, 309, 10.1126/science.aab1852

Gesell, 2009, CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy, J Biol Chem, 284, 24432, 10.1074/jbc.M109.033373

Ziegler, 2006, Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis, Plant J, 48, 177, 10.1111/j.1365-313X.2006.02860.x

Lenz, 1995, Acetyl coenzyme A:salutaridinol-7-O-acetyltransferase from Papaver somniferum plant cell cultures, J Biol Chem, 270, 31091, 10.1074/jbc.270.52.31091

Grothe, 2001, Molecular characterization of the salutaridinol 7-O-Acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum, J Biol Chem, 276, 30717, 10.1074/jbc.M102688200

Chen, 2018, A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis article, Nat Chem Biol, 14, 738, 10.1038/s41589-018-0059-7

Lee, 2010, Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family, Plant Cell, 22, 3489, 10.1105/tpc.110.077958

Hagel, 2010, Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy, Nat Chem Biol, 6, 273, 10.1038/nchembio.317

Unterlinner, 1999, Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum, Plant J, 18, 465, 10.1046/j.1365-313X.1999.00470.x

Dastmalchi, 2019, Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy, Nat Chem Biol, 15, 384, 10.1038/s41589-019-0247-0

Dastmalchi, 2018, Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy, Plant J, 95, 631, 10.1111/tpj.13975

Thodey, 2014, A microbial biomanufacturing platform for natural and semisynthetic opioids, Nat Chem Biol, 10, 837, 10.1038/nchembio.1613

Galanie, 2015, Complete biosynthesis of opioids in yeast, Science, 349, 1095, 10.1126/science.aac9373

Brown, 2015, De novo production of the plant-derived alkaloid strictosidine in yeast, Proc Natl Acad Sci USA, 112, 3205, 10.1073/pnas.1423555112

Qu, 2018, Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine, Proc Natl Acad Sci USA, 115, 3180, 10.1073/pnas.1719979115

Qu, 2015, Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast, Proc Natl Acad Sci USA, 112, 6224, 10.1073/PNAS.1501821112

Qu, 2018, Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant, Planta, 247, 625, 10.1007/s00425-017-2812-7

Caputi, 2018, Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle, Science, 360, 1235, 10.1126/science.aat4100

Qu, 2019, Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus, Plant J, 97, 257, 10.1111/tpj.14111

Taura, 2009, Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway, FEBS Lett, 583, 2061, 10.1016/j.febslet.2009.05.024

Gagne, 2012, Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides, Proc Natl Acad Sci USA, 109, 12811, 10.1073/pnas.1200330109

Sirikantaramas, 2005, Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes, Plant Cell Physiol, 46, 1578, 10.1093/pcp/pci166

Taura, 1996, Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid, J Biol Chem, 271, 17411, 10.1074/jbc.271.29.17411

Taura, 2007, Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa, FEBS Lett, 581, 2929, 10.1016/j.febslet.2007.05.043

Luo, 2019, Complete biosynthesis of cannabinoids and their unnatural analogues in yeast, Nature, 567, 123, 10.1038/s41586-019-0978-9

Zirpel, 2017, Engineering yeasts as platform organisms for cannabinoid biosynthesis, J Biotechnol, 259, 204, 10.1016/j.jbiotec.2017.07.008

Dastmalchi, 2019, Purine permease-type benzylisoquinoline alkaloid transporters in opium poppy, Plant Physiol, 181, 916, 10.1104/pp.19.00565

Fossati, 2014, Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae, Nat Commun, 5, 3283, 10.1038/ncomms4283

Yu, 2013, ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus, Proc Natl Acad Sci USA, 110, 15830, 10.1073/pnas.1307504110

Payne, 2017, An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole, Nat Plants, 3, 16208, 10.1038/nplants.2016.208

Larsen, 2017, Identification of iridoid glucoside transporters in Catharanthus roseus, Plant Cell Physiol, 58, 1507, 10.1093/pcp/pcx097

Livingston, 2020, Cannabis glandular trichomes alter morphology and metabolite content during flower maturation, Plant J, 101, 37, 10.1111/tpj.14516

Hwang, 2016, Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle, Mol Plant, 9, 338, 10.1016/j.molp.2016.02.003

Laverty, 2019, A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci, Genome Res, 29, 146, 10.1101/gr.242594.118

Kellner, 2015, Genome-guided investigation of plant natural product biosynthesis, Plant J, 82, 680, 10.1111/tpj.12827

Dugé de Bernonville, 2015, Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome, BMC Genomics, 16, 619, 10.1186/s12864-015-1678-y

Munkert, 2015, Iridoid synthase activity is common among the plant progesterone 5β-reductase family, Mol Plant, 8, 136, 10.1016/j.molp.2014.11.005

Besseau, 2013, A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus, Plant Physiol, 163, 1792, 10.1104/pp.113.222828

DeLoache, 2015, An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose, Nat Chem Biol, 11, 465, 10.1038/nchembio.1816

Runguphan, 2012, Redesign of a dioxygenase in morphine biosynthesis, Chem Biol, 19, 674, 10.1016/j.chembiol.2012.04.017

Denby, 2018, Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer, Nat Commun, 9, 965, 10.1038/s41467-018-03293-x

Ro, 2006, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, 440, 940, 10.1038/nature04640

Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051

Campbell, 2016, Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant seco-iridoids, ACS Synth Biol, 5, 405, 10.1021/acssynbio.5b00289

Luttik, 2008, Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact, Metab Eng, 10, 141, 10.1016/j.ymben.2008.02.002

Trenchard, 2015, De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast, Metab Eng, 31, 74, 10.1016/j.ymben.2015.06.010

Kluza, 2018, Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway, J Struct Biol, 202, 229, 10.1016/j.jsb.2018.01.007

Shoyama, 2012, Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa, J Mol Biol, 423, 96, 10.1016/j.jmb.2012.06.030

Ma, 2006, The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins, Plant Cell, 18, 907, 10.1105/tpc.105.038018

Bennett, 2018, Structure and biocatalytic scope of coclaurine N-methyltransferase, Angew Chemie Int Ed, 57, 10600, 10.1002/anie.201805060

Lang, 2019, Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition, J Biol Chem, 294, 14482, 10.1074/jbc.RA119.009214

French, 1994, Purification and characterization of morphinone reductase from Pseudomonas putida M10, Biochem J, 301, 97, 10.1042/bj3010097

French, 1995, Biological production of semisynthetic opiates using genetically engineered bacteria, Bio/Technology, 13, 674, 10.1038/nbt0795-674

Nakagawa, 2016, Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli, Nat Commun, 7, 10390, 10.1038/ncomms10390

Nakagawa, 2014, (R, S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli, Sci Rep, 4, 6695, 10.1038/srep06695

Lütke-Eversloh, 2007, L-Tyrosine production by deregulated strains of Escherichia coli, Appl Microbiol Biotechnol, 75, 103, 10.1007/s00253-006-0792-9

Minami, 2008, Microbial production of plant benzylisoquinoline alkaloids, Proc Natl Acad Sci USA, 105, 7393, 10.1073/pnas.0802981105

Nakagawa, 2011, A bacterial platform for fermentative production of plant alkaloids, Nat Commun, 2, 326, 10.1038/ncomms1327

Kim, 2013, Improvement of reticuline productivity from dopamine by using engineered Escherichia coli, Biosci Biotechnol Biochem, 77, 2166, 10.1271/bbb.130552

Matsumura, 2017, Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method, Biosci Biotechnol Biochem, 81, 396, 10.1080/09168451.2016.1243985

Carey, 2006, Analysis of the reactions used for the preparation of drug candidate molecules, Org Biomol Chem, 4, 2337, 10.1039/B602413K

Neumann, 2008, Halogenation strategies in natural product biosynthesis, Chem Biol, 15, 99, 10.1016/j.chembiol.2008.01.006

Li, 2018, Complete biosynthesis of noscapine and halogenated alkaloids in yeast, Proc Natl Acad Sci USA, 115, 3922, 10.1073/pnas.1721469115

McCoy, 2006, Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus, J Am Chem Soc, 128, 14276, 10.1021/ja066787w

Runguphan, 2010, Integrating carbon–halogen bond formation into medicinal plant metabolism, Nature, 468, 461, 10.1038/nature09524

Markey, 2007, CHAPTER 11-Pathways of drug metabolism, Atkinson AJ, 143

Matsumura, 2018, Microbial production of novel sulphated alkaloids for drug discovery, Sci Rep, 8, 7980, 10.1038/s41598-018-26306-7

Pyne, 2020, A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids, Nat Commun, 11, 3337, 10.1038/s41467-020-17172-x

Bow, 2016, The structure–function relationships of classical cannabinoids: CB1/CB2 modulation, Perspect Medicin Chem, 8, 17, 10.4137/PMC.S32171