Back to Baxterisation

Springer Science and Business Media LLC - Tập 365 - Trang 1079-1090 - 2019
N. Crampe1, E. Ragoucy2, M. Vanicat2
1Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
2Laboratoire de Physique Théorique LAPTh, CNRS and Université Savoie Mont Blanc, Annecy-le-Vieux Cedex, France

Tóm tắt

In the continuity of our previous paper (Crampe et al. in Commun Math Phys 349:271, 2017, arXiv:1509.05516 ), we define three new algebras, $${\mathcal{A}_{\mathfrak{n}}(a,b,c)}$$ , $${\mathcal{B}_{\mathfrak{n}}}$$ and $${\mathcal{C}_{\mathfrak{n}}}$$ , that are close to the braid algebra. They allow to build solutions to the Yang-Baxter equation with spectral parameters. The construction is based on a baxterisation procedure, similar to the one used in the context of Hecke or BMW algebras. The $${\mathcal{A}_{\mathfrak{n}}(a,b,c)}$$ algebra depends on three arbitrary parameters, and when the parameter a is set to zero, we recover the algebra $${\mathcal{M}_{\mathfrak{n}}(b,c)}$$ already introduced elsewhere for purpose of baxterisation. The Hecke algebra (and its baxterisation) can be recovered from a coset of the $${\mathcal{A}_{\mathfrak{n}}(0,0,c)}$$ algebra. The algebra $${\mathcal{A}_{\mathfrak{n}}(0,b,-b^2)}$$ is a coset of the braid algebra. The two other algebras $${\mathcal{B}_{\mathfrak{n}}}$$ and $${\mathcal{C}_{\mathfrak{n}}}$$ do not possess any parameter, and can be also viewed as a coset of the braid algebra.

Tài liệu tham khảo

Jones, V.F.R.: Baxterisation, Int. J. Mod. Phys. B 4, 701 (1990). In: Proceedings of “Yang-Baxter equations, conformal invariance and integrability in statistical mechanics and field theory”, Canberra (1989) Isaev, A.P.: Quantum groups and Yang-Baxter equations, Max-Planck Institut für Mathematik (2004) Jimbo M.: A q-difference analogue of U(gl(n + 1)), Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys. 11, 247 (1986) Cheng Y., Ge M.L., Xue K.: Yang-Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991) Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. Phys. B 354, 625 (1991) Li Y.-Q.: Yang Baxterization. J. Math. Phys. 34, 757 (1993) Boukraa S., Maillard J.M.: Let’s Baxterise. J. Stat. Phys. 102, 641 (2001) arXiv:hep-th/0003212 Arnaudon D., Chakrabarti A., Dobrev V.K., Mihov S.G.: Spectral decomposition and baxterisation of exotic bialgebras and associated noncommutative geometries. Int. J. Mod. Phys. A 18, 4201 (2003) Kulish P.P., Manojlović N., Nagy Z.: Symmetries of spin systems and Birman–Wenzl–Murakami algebra. J. Math. Phys. 51, 043516 (2010) arXiv:0910.4036 Fonseca T., Frappat L., Ragoucy E.: R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz. J. Math. Phys. 56, 013503 (2015) arXiv:1406.3197 Crampe N., Frappat L., RagoucyE Vanicat M.: A new braid-like algebra for baxterisation. Commun. Math. Phys. 349, 271 (2017) arXiv:1509.05516 Vanicat, M.: Approche intégrabiliste des modèles de physique statistique hors d’équilibre. Section II.B.2.c, PhD thesis (in english) arXiv:1708.02440 Crampe N., Frappat L., Ragoucy E., Vanicat M.: 3-state Hamiltonians associated to solvable 33-vertex models. J. Math. Phys. 57, 093504 (2016) arXiv:1509.07589 Isaev A.P., Ogievetsky O.V.: Baxterized solutions of reflection equation and integrable chain models. Nucl. Phys. B 760, 167 (2007) arXiv:math-ph/0510078