BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

Applied Physics Reviews - Tập 4 Số 4 - 2017
Matias Acosta1, Nikola Novak1, Verónica García1, Satyanarayan Patel1,2, Rahul Vaish2, Jurij Koruza1, George A. Rossetti3,4, Jürgen Rödel1
1Institute of Materials Science, Technische Universität Darmstadt 1 , Darmstadt 64287, Germany
2School of Engineering, Indian Institute of Technology Mandi 2 , Himachal Pradesh 175001, India
3Connecticut 3 , Storrs, 06269, USA
4Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA

Tóm tắt

We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

Từ khóa


Tài liệu tham khảo

2006, Environmental occurrence, health effects and management of lead poisoning, Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects

1971, Piezoelectric Ceramics

EU-Directive 2002/96/EC, 2003, Waste electrical and electronic equipment (WEEE), Off. J. Eur. Union L, 37, 24

EU-Directive 2011/65/EU, 2011, Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), Official Journal of the European Union, L174, 88

2004, Nature, 432, 84, 10.1038/nature03028

1991, Jpn. J. Appl. Phys., Part 1, 30, 2236, 10.1143/JJAP.30.2236

1950, Indus. Eng. Chem., 42, 264, 10.1021/ie50482a020

1949, London, Edinburgh Dublin Philos. Mag. J. Sci., 40, 1040, 10.1080/14786444908561372

1951, London, Edinburgh Dublin Philos. Mag. J. Sci., 42, 1065, 10.1080/14786445108561354

1999, J. Am. Ceram. Soc., 82, 797, 10.1111/j.1151-2916.1999.tb01840.x

2009, Phys. Rev. Lett., 103, 257602, 10.1103/PhysRevLett.103.257602

2015, J. Eur. Ceram. Soc., 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013

2013, J. Am. Ceram. Soc., 96, 3677, 10.1111/jace.12715

2015, Chem. Rev., 115, 2559, 10.1021/cr5006809

2015, Materials, 8, 8117, 10.3390/ma8125449

2012, J. Electroceram., 29, 71, 10.1007/s10832-012-9742-3

2015, J. Am. Ceram. Soc., 98, 3405, 10.1111/jace.13853

2007, Jpn. J. Appl. Phys., Part 1, 46, 6999, 10.1143/JJAP.46.6999

1999, Chem. Commun., 0, 1497, 10.1039/a903680f

2012, Jpn. J. Appl. Phys., Part 1, 51, 09LC08, 10.7567/JJAP.51.09LC08

2010, Jpn. J. Appl. Phys., Part 1, 49, 09MC04, 10.1143/jjap.49.09mc04

2015, J. Adv. Dielectr., 05, 1530002, 10.1142/S2010135X15300029

2016, Sens. Actuators A, 237, 9, 10.1016/j.sna.2015.11.015

2014, Adv. Mater., 26, 7432, 10.1002/adma.201402868

2015, Nano Energy, 15, 598, 10.1016/j.nanoen.2015.05.003

2015, ACS Appl. Mater. Interfaces, 7, 9831, 10.1021/acsami.5b01760

2013, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, 1272, 10.1109/TUFFC.2013.2692

1971, Ferroelectrics, 2, 239, 10.1080/00150197108234098

1987, Ceram. Civiliz., 3, 289

1987, Ferroelectrics, 74, 285, 10.1080/00150198708201308

1991, Ferroelectrics, 113, 3, 10.1080/00150199108014053

2000, Mater. Res. Innovations, 4, 3, 10.1007/s100190000062

2005, Ferroelectricity: The Foundation of a Field from Form to Function, 845

2017, J. Am. Ceram. Soc., 100, 3346, 10.1111/jace.15021

1946, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, 1st ed.

2004, History of the First Ferroelectric Oxide, BaTiO3

1946, Nature, 157, 297, 10.1038/157297c0

H. Thurnauer and J. Deaderick, U.S. patent US2429588A (2 October 1941).

E. Wainer and A. N. Solomon, “Titanium alloy manufacturing Co,” Report no. 8 (1942), Vol. 3.

1945, C. R. Acad. Sci. URSS, 46, 139

1947, Busseiron Kenkyu, 6, 1

1946, Indus. Eng. Chem., 38, 1097, 10.1021/ie50443a009

1946, C. R. Acad. Sci. URSS, 51, 21

1945, Dokl. Akad. Nauk SSSR, 48, 662

1963, J. Phys. Soc. Jpn., 18, 1477, 10.1143/JPSJ.18.1477

1946, Trans. Electrochem. Soc., 89, 331, 10.1149/1.3071718

1950, Rev. Mod. Phys., 22, 221, 10.1103/RevModPhys.22.221

1945, Nature, 155, 484

1949, London, Edinburgh Dublin Philos. Mag. J. Sci., 40, 1019, 10.1080/14786444908561371

1946, J. Phys. Soc. Jpn., 1, 32, 10.1143/JPSJ.1.32

1947, Experientia, 3, 148, 10.1007/BF02137459

R. B. Gray, U.S. patent US2486560A (1946).

1947, Phys. Rev., 72, 981, 10.1103/PhysRev.72.981

1947, Phys. Rev., 71, 890, 10.1103/PhysRev.71.890

1948, Phys. Rev., 74, 1134, 10.1103/PhysRev.74.1134

1948, Electronics, 21, 128

1949, Phys. Rev., 76, 1187, 10.1103/PhysRev.76.1187

1950, J. Am. Ceram. Soc., 33, 63, 10.1111/j.1151-2916.1950.tb14168.x

1949, Tele-Tech, 8, 29

1948, Phys. Rev., 74, 1622, 10.1103/PhysRev.74.1622

1935, Phys. Z. Sowjetunion, 8, 101

1945, J. Exp. Theor. Phys., 15, 1945

1954, J. Am. Chem. Soc., 76, 940, 10.1021/ja01632a107

1957, Phys. Rev., 105, 856, 10.1103/PhysRev.105.856

1954, Phys. Rev., 95, 690, 10.1103/PhysRev.95.690

1960, Phys. Rev., 117, 1460, 10.1103/PhysRev.117.1460

1955, J. Am. Ceram. Soc., 38, 102, 10.1111/j.1151-2916.1955.tb14585.x

1955, J. Am. Ceram. Soc., 38, 412, 10.1111/j.1151-2916.1955.tb14566.x

1954, J. Am. Ceram. Soc., 37, 539, 10.1111/j.1151-2916.1954.tb13986.x

1953, J. Am. Ceram. Soc., 36, 215, 10.1111/j.1151-2916.1953.tb12870.x

1959, J. Phys. Soc. Jpn., 14, 1286, 10.1143/JPSJ.14.1286

1952, J. Phys. Soc. Jpn., 7, 5, 10.1143/JPSJ.7.5

1952, J. Phys. Soc. Jpn., 7, 12, 10.1143/JPSJ.7.12

1952, J. Phys. Soc. Jpn., 7, 333, 10.1143/JPSJ.7.333

1953, J. Phys. Soc. Jpn., 8, 615, 10.1143/JPSJ.8.615

1954, J. Appl. Phys., 25, 809, 10.1063/1.1721741

B. Jaffe, “Google patents,” U.S. patent US2708244 A (24 March 1954).

1955, J. Res. Natl. Bur. Stand., 55, 239, 10.6028/jres.055.028

B. Jaffe, R. S. Roth, and S. Marzullo, U.S. patent US2849404 A (13 April 1956).

1987, Ferroelectrics, 74, 301, 10.1080/00150198708201310

1996, J. Phys. D: Appl. Phys., 29, 2057, 10.1088/0022-3727/29/7/046

1997, J. Appl. Phys., 82, 1788, 10.1063/1.365981

1997, J. Phys.: Condens. Matter, 9, 4943, 10.1088/0953-8984/9/23/018

1996, Appl. Phys. Lett., 68, 3046, 10.1063/1.115572

2008, Appl. Phys. Express, 1, 111402, 10.1143/APEX.1.111402

2012, J. Eur. Ceram. Soc., 32, 1059, 10.1016/j.jeurceramsoc.2011.11.014

2009, J. Phys. D: Appl. Phys., 42, 189801, 10.1088/0022-3727/42/18/189801

2010, J. Ceram. Soc. Jpn., 118, 940, 10.2109/jcersj2.118.940

2006, Jpn. J. Appl. Phys., Part 1, 45, 7405, 10.1143/JJAP.45.7405

2007, Jpn. J. Appl. Phys., Part 1, 46, 7044, 10.1143/JJAP.46.7044

2009, Key Eng. Mater., 421-422, 13, 10.4028/www.scientific.net/KEM.421-422.13

2004, Brit. Ceram. Trans., 103, 93, 10.1179/096797804225012747

2005, J. Appl. Phys., 98, 014109, 10.1063/1.1957130

2007, Jpn. J. Appl. Phys., Part 1, 46, 7039, 10.1143/JJAP.46.7039

2008, Ferroelectrics, 373, 11, 10.1080/00150190802408531

2009, J. Eur. Ceram. Soc., 29, 3235, 10.1016/j.jeurceramsoc.2009.06.034

1977, Principles and Applications of Ferroelectrics and Related Material

1993, Ferroelectric Crystals

1970, J. Phys. Soc. Jpn., 28, 38

2005, Properties of Materials Anisotropy: Anisotropy, Symmetry, Structure

1998, Ferroelectric Phenomena in Crystals: Physical Foundations

2008, Thermodynamic theory, Piezoelectricity: Evolution and Future of a Technology

1955, Rep. Prog. Phys., 18, 230, 10.1088/0034-4885/18/1/306

1997, J. Phys. Chem. B, 101, 10141, 10.1021/jp971522c

2010, Appl. Phys. Lett., 97, 062906, 10.1063/1.3479479

2007, J. Appl. Phys., 101, 054112, 10.1063/1.2653925

1990, J. Mater. Sci., 25, 2655, 10.1007/BF00584864

2010, Domains in Ferroic Crystals and Thin Films

1971, Czech. J. Phys. B, 21, 955, 10.1007/BF01706491

1988, J. Appl. Phys., 64, 6445, 10.1063/1.342059

2006, Appl. Phys. Lett., 88, 202901, 10.1063/1.2203750

1998, Rep. Prog. Phys., 61, 1267, 10.1088/0034-4885/61/9/002

2014, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773

2012, Adv. Funct. Mater., 22, 2058, 10.1002/adfm.201102841

1989, Ferroelectrics, 98, 123, 10.1080/00150198908217576

2014, Adv. Funct. Mater., 24, 885, 10.1002/adfm.201301913

2008, Jpn. J. Appl. Phys., Part 1, 47, 7607, 10.1143/JJAP.47.7607

2005, J. Am. Ceram. Soc., 88, 2663, 10.1111/j.1551-2916.2005.00671.x

1997, J. Appl. Phys., 82, 1973, 10.1063/1.366006

2009, Appl. Phys. Lett., 95, 012905, 10.1063/1.3173198

1987, J. Appl. Phys., 62, 1344, 10.1063/1.339636

2004, J. Eur. Ceram. Soc., 24, 725, 10.1016/S0955-2219(03)00317-0

2003, J. Appl. Phys., 93, 1735, 10.1063/1.1535748

2015, Appl. Phys. Lett., 107, 142906, 10.1063/1.4932654

1994, J. Appl. Phys., 75, 454, 10.1063/1.355874

1998, J. Am. Ceram. Soc., 81, 677, 10.1111/j.1151-2916.1998.tb02389.x

2012, J. Am. Ceram. Soc., 95, 1998, 10.1111/j.1551-2916.2012.05146.x

2012, Electron. Commun. Jpn., 95, 20, 10.1002/ecj.10418

2012, Acta Mater., 60, 5022, 10.1016/j.actamat.2012.06.015

2015, Phys. Status Solidi A, 212, 433, 10.1002/pssa.201431233

2015, Sci. Rep., 5, 9953, 10.1038/srep09953

2006, Jpn. J. Appl. Phys., Part 2, 45, L30, 10.1143/JJAP.45.L30

2017, Acta Mater., 126, 77, 10.1016/j.actamat.2016.12.049

2010, Domain wall engineering in lead-free piezoelectric materials and their enhanced piezoelectricities, Next-Generation Actuators Leading Breakthroughs

2011, J. Appl. Phys., 110, 084110, 10.1063/1.3654137

1989, J. Am. Ceram. Soc., 72, 1555, 10.1111/j.1151-2916.1989.tb07706.x

2000, Phys. Rev. B, 62, 3065, 10.1103/PhysRevB.62.3065

2004, Phys. Rev. B, 70, 024107, 10.1103/PhysRevB.70.024107

2007, Jpn. J. Appl. Phys., Part 2, 46, L97, 10.1143/JJAP.46.L97

2008, Adv. Sci. Technol., 54, 7, 10.4028/www.scientific.net/AST.54.7

1985, J. Appl. Phys., 58, 1619, 10.1063/1.336051

2007, J. Am. Ceram. Soc., 90, 2297, 10.1111/j.1551-2916.2007.01820.x

2017, J. Appl. Phys., 121, 024101, 10.1063/1.4973683

2015, J. Mater. Sci.: Mater. Electron., 26, 4425, 10.1007/s10854-015-2920-8

2017, J. Mater. Res., 32, 3219, 10.1557/jmr.2017.207

2009, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x

2004, Crit. Rev. Solid State Mater. Sci., 29, 45, 10.1080/10408430490490905

2010, Sci. Technol. Adv. Mater., 11, 044302, 10.1088/1468-6996/11/4/044302

2015, Trans. Materi. Res. Soc. Jpn., 40, 223, 10.14723/tmrsj.40.223

2015, J. Mater. Sci., 50, 7896, 10.1007/s10853-015-9322-4

2016, Ceram. Int., 42, 18756, 10.1016/j.ceramint.2016.09.016

2014, Adv. Funct. Mater., 24, 356, 10.1002/adfm.201302102

2011, Appl. Phys. Lett., 99, 062906, 10.1063/1.3621878

2014, J. Appl. Phys., 116, 154104, 10.1063/1.4898586

2015, Nat. Commun., 6, 6615, 10.1038/ncomms7615

2015, Appl. Phys. Lett., 106, 232904, 10.1063/1.4922494

2012, Chem. Mater., 24, 3363, 10.1021/cm301324h

2015, J. Mater. Sci.: Mater. Electron., 26, 9243, 10.1007/s10854-015-3707-7

2016, J. Eur. Ceram. Soc., 36, 1009, 10.1016/j.jeurceramsoc.2015.11.046

2007, J. Am. Ceram. Soc., 90, 3485, 10.1111/j.1551-2916.2007.01962.x

2000, J. Am. Ceram. Soc., 83, 101, 10.1111/j.1151-2916.2000.tb01155.x

1984, J. Am. Ceram. Soc., 67, 249, 10.1111/j.1151-2916.1984.tb18841.x

1993, J. Mater. Res., 8, 871, 10.1557/JMR.1993.0871

2012, J. Am. Ceram. Soc., 95, 2435, 10.1111/j.1551-2916.2012.05111.x

2014, J. Am. Ceram. Soc., 97, 1937, 10.1111/jace.12884

2016, Sci. Rep., 6, 28742, 10.1038/srep28742

2016, Sci. Rep., 6, 36910, 10.1038/srep36910

2010, Appl. Phys. Lett., 96, 242902, 10.1063/1.3455328

1988, Ferroelectrics, 87, 109, 10.1080/00150198808201374

1977, Ferroelectrics, 17, 473, 10.1080/00150197808236770

2011, Ferroelectrics, 22, 729, 10.1080/00150197808237382

1996, J. Appl. Phys., 79, 9250, 10.1063/1.362600

2004, Nat. Mater., 3, 91, 10.1038/nmat1051

2010, Funct. Mater. Lett., 03, 69, 10.1142/S1793604710000890

2006, Appl. Phys. Lett., 89, 172908, 10.1063/1.2360933

2017, Appl. Phys. Lett., 110, 102904, 10.1063/1.4977492

2016, J. Am. Ceram. Soc., 99, 206, 10.1111/jace.13942

2010, Appl. Phys. Lett., 97, 112906, 10.1063/1.3490700

2007, Appl. Phys. Lett., 91, 032904, 10.1063/1.2756355

2008, Phys. Rev. B, 77, 134115, 10.1103/PhysRevB.77.134115

2004, Appl. Phys. Lett., 85, 5658, 10.1063/1.1829394

2007, J. Electroceram., 19, 11, 10.1007/s10832-007-9068-8

2013, J. Eur. Ceram. Soc., 33, 1009, 10.1016/j.jeurceramsoc.2012.11.007

2012, J. Eur. Ceram. Soc., 32, 899, 10.1016/j.jeurceramsoc.2011.10.054

2014, Mater. Res. Bull., 52, 158, 10.1016/j.materresbull.2014.01.018

2014, Mater. Res. Bull., 59, 305, 10.1016/j.materresbull.2014.07.040

2014, RSC Adv., 4, 1283, 10.1039/C3RA44886J

2013, J. Electroceram., 30, 24, 10.1007/s10832-012-9701-z

1961, Phys. Rev., 124, 1354, 10.1103/PhysRev.124.1354

2013, J. Phys.: Condens. Matter, 25, 362203, 10.1088/0953-8984/25/36/362203

2002, J. Appl. Phys., 92, 1489, 10.1063/1.1487435

2012, J. Appl. Phys., 111, 084107, 10.1063/1.4705467

2004, J. Electroceram., 13, 463, 10.1007/s10832-004-5143-6

2013, J. Appl. Phys., 114, 014102, 10.1063/1.4812472

2014, Appl. Phys. Lett., 104, 252906, 10.1063/1.4885516

2015, Phys. Rev. B, 91, 024101, 10.1103/PhysRevB.91.024101

1965, J. Am. Ceram. Soc., 48, 413, 10.1111/j.1151-2916.1965.tb14779.x

2000, Rev. Mineral. Geochem., 39, 135, 10.2138/rmg.2000.39.06

1926, Naturwissenschaften, 14, 477, 10.1007/BF01507527

2012, Europhys. Lett., 98, 27008, 10.1209/0295-5075/98/27008

2016, Dalton Trans., 45, 6466, 10.1039/C5DT04891E

2015, Sci. Rep., 5, 8606, 10.1038/srep08606

1951, J. Phys. Soc. Jpn., 6, 274, 10.1143/JPSJ.6.274

1991, Phase Transitions, 35, 61, 10.1080/01411599108203423

2006, Phys. Rev. B, 73, 104116, 10.1103/PhysRevB.73.104116

1991, Phase Transitions, 34, 25, 10.1080/01411599108205191

2002, J. Phys.: Condens. Matter, 14, L599, 10.1088/0953-8984/14/36/101

1997, Phys. Rev. Lett., 78, 2397, 10.1103/PhysRevLett.78.2397

2008, J. Appl. Phys., 103, 114113, 10.1063/1.2930883

2010, Philos. Mag., 90, 37, 10.1080/14786430903074789

2005, Acta Crystallogr. A, 61, 93, 10.1107/S0108767304024493

2010, Philos. Mag., 90, 71, 10.1080/14786430902897750

2011, Integr. Ferroelectr., 126, 155, 10.1080/10584587.2011.575018

2014, J. Am. Ceram. Soc., 97, 1661, 10.1111/jace.12979

2003, Phys. Rev. Lett., 91, 197601, 10.1103/PhysRevLett.91.197601

2014, Adv. Phys., 63, 267, 10.1080/00018732.2014.974304

2017, Sci. Rep., 7, 40916, 10.1038/srep40916

1995, Eur. J. Mineral., 7, 791, 10.1127/ejm/7/4/0791

2006, Appl. Phys. Lett., 88, 072912, 10.1063/1.2173721

1959, J. Am. Ceram. Soc., 42, 212, 10.1111/j.1151-2916.1959.tb15455.x

1983, J. Mater. Sci., 18, 3041, 10.1007/BF00700786

2005, Mater. Lett., 59, 135, 10.1016/j.matlet.2004.07.053

2016, J. Eur. Ceram. Soc., 36, 583, 10.1016/j.jeurceramsoc.2015.11.001

2014, J. Appl. Phys., 116, 134102, 10.1063/1.4896840

2017, J. Am. Ceram. Soc., 100, 2098, 10.1111/jace.14749

2012, Jpn. J. Appl. Phys., Part 1, 51, 015503, 10.7567/JJAP.51.015503

2009, J. Electroceram., 25, 77, 10.1007/s10832-009-9591-x

2009, Appl. Phys. Lett., 94, 032902, 10.1063/1.3072347

2017, J. Eur. Ceram. Soc., 37, 1411, 10.1016/j.jeurceramsoc.2016.11.028

1982, J. Am. Ceram. Soc., 65, 539, 10.1111/j.1151-2916.1982.tb10778.x

1987, Int. J. High Technol. Ceram., 3, 91, 10.1016/0267-3762(87)90031-2

1988, J. Mater. Sci., 23, 61, 10.1007/BF01174035

2017, Actuators, 6, 24, 10.3390/act6030024

2013, J. Mater. Chem. A, 1, 7332, 10.1039/c3ta10792b

2015, Nano Energy, 13, 298, 10.1016/j.nanoen.2015.02.034

2016, Nanoscale, 8, 5098, 10.1039/C5NR09029F

2015, Appl. Phys. Lett., 107, 042903, 10.1063/1.4927597

2012, J. Cryst. Growth, 343, 17, 10.1016/j.jcrysgro.2012.01.009

2013, J. Cryst. Growth, 375, 20, 10.1016/j.jcrysgro.2013.04.033

2013, Appl. Phys. Lett., 102, 082902, 10.1063/1.4793213

2015, Materials, 8, 7962, 10.3390/ma8115436

2011, J. Am. Ceram. Soc., 95, 986, 10.1111/j.1551-2916.2011.04877.x

2014, Appl. Phys. Lett., 104, 103112, 10.1063/1.4867013

2017, Mater. Chem. Phys., 186, 528, 10.1016/j.matchemphys.2016.11.030

2013, Curr. Appl. Phys., 13, 1205, 10.1016/j.cap.2013.03.015

2015, J. Am. Ceram. Soc., 98, 114, 10.1111/jace.13228

2015, J. Eur. Ceram. Soc., 35, 2041, 10.1016/j.jeurceramsoc.2015.01.018

2016, J. Alloys Compd., 663, 818, 10.1016/j.jallcom.2015.12.167

2014, RSC Adv., 4, 56933, 10.1039/C4RA08280J

2013, Appl. Phys. Lett., 103, 122903, 10.1063/1.4821918

2015, J. Am. Ceram. Soc., 98, 2094, 10.1111/jace.13560

2015, RSC Adv., 5, 55453, 10.1039/C5RA06939D

2015, Appl. Surf. Sci., 331, 477, 10.1016/j.apsusc.2015.01.100

2015, J. Am. Ceram. Soc., 98, 2823, 10.1111/jace.13677

2016, J. Appl. Phys., 119, 094107, 10.1063/1.4942924

2011, J. Appl. Phys., 109, 104101, 10.1063/1.3572056

2011, Nat. Nanotechnol., 6, 491, 10.1038/nnano.2011.98

2015, J. Eur. Ceram. Soc., 35, 1785, 10.1016/j.jeurceramsoc.2014.12.010

2014, J. Appl. Phys., 116, 164107, 10.1063/1.4900494

2009, J. Alloys Compd., 468, 370, 10.1016/j.jallcom.2008.01.073

2016, Mater. Res. Bull., 76, 450, 10.1016/j.materresbull.2015.12.022

2016, Adv. Mater., 28, 7970, 10.1002/adma.201600947

2012, J. Alloys Compd., 545, 210, 10.1016/j.jallcom.2012.08.017

1977, Mater. Res. Bull., 12, 1221, 10.1016/0025-5408(77)90177-5

S. Kokalj, “Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3,” Master thesis (University of Ljubljana, 2011).

2015, J. Eur. Ceram. Soc., 35, 3445, 10.1016/j.jeurceramsoc.2015.05.010

2013, RSC Adv., 3, 20693, 10.1039/c3ra43429j

2012, J. Eur. Ceram. Soc., 32, 891, 10.1016/j.jeurceramsoc.2011.11.003

2011, J. Alloys Compd., 509, L359, 10.1016/j.jallcom.2011.08.024

2016, Ceram. Int., 42, 3429, 10.1016/j.ceramint.2015.10.139

2014, Ceram. Int., 40, 3933, 10.1016/j.ceramint.2013.08.037

2010, J. Phys. D: Appl. Phys., 43, 465401, 10.1088/0022-3727/43/46/465401

2017, Mater. Lett., 191, 69, 10.1016/j.matlet.2017.01.034

2016, Phys. Rev. B, 94, 104108, 10.1103/PhysRevB.94.104108

2015, Phys. Rev. B, 92, 224112, 10.1103/PhysRevB.92.224112

2016, Ceram. Int., 42, 18585, 10.1016/j.ceramint.2016.08.201

2015, J. Mater. Sci.: Mater. Electron., 26, 9649, 10.1007/s10854-015-3631-x

2015, J. Eur. Ceram. Soc., 35, 4153, 10.1016/j.jeurceramsoc.2015.06.030

2011, Appl. Phys. Lett., 99, 092901, 10.1063/1.3629784

2011, J. Appl. Phys., 109, 054110, 10.1063/1.3549173

2014, Phys. Rev. B, 90, 014103, 10.1103/PhysRevB.90.014103

2014, Appl. Phys. Lett., 105, 162908, 10.1063/1.4899125

2014, Appl. Phys. Lett., 104, 252909, 10.1063/1.4885675

2013, J. Eur. Ceram. Soc., 33, 3037, 10.1016/j.jeurceramsoc.2013.05.032

2012, J. Appl. Phys., 111, 124110, 10.1063/1.4730342

2012, J. Appl. Phys., 112, 114108, 10.1063/1.4768273

2013, J. Am. Ceram. Soc., 96, 2913, 10.1111/jace.12424

2013, J. Am. Ceram. Soc., 96, 3805, 10.1111/jace.12586

2014, Acta Mater., 66, 340, 10.1016/j.actamat.2013.11.021

2014, Acta Mater., 78, 37, 10.1016/j.actamat.2014.06.005

2013, J. Appl. Phys., 113, 014103, 10.1063/1.4772741

2011, Curr. Appl. Phys., 11, S120, 10.1016/j.cap.2011.01.034

2017, Acta Mater., 125, 177, 10.1016/j.actamat.2016.11.064

2011, J. Appl. Phys., 109, 124116, 10.1063/1.3599854

2013, Appl. Phys. Lett., 102, 092903, 10.1063/1.4793400

2014, Appl. Phys. Lett., 105, 232904, 10.1063/1.4903807

2013, J. Appl. Crystallogr., 46, 324, 10.1107/S0021889813000666

2014, RSC Adv., 4, 26993, 10.1039/C4RA03172E

2011, J. Eur. Ceram. Soc., 31, 2005, 10.1016/j.jeurceramsoc.2011.04.023

2015, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 22, 734, 10.1109/TDEI.2015.7076769

2015, J. Mater. Sci.: Mater. Electron., 26, 5270, 10.1007/s10854-015-3063-7

2013, J. Mater. Chem. C, 1, 4846, 10.1039/c3tc30741g

1999, J. Mater. Chem., 9, 2829, 10.1039/a905910e

1999, J. Mater. Chem., 9, 1609, 10.1039/a902335f

2000, Solid State Commun., 113, 77, 10.1016/S0038-1098(99)00445-7

2005, Appl. Phys. Lett., 86, 022905, 10.1063/1.1850598

2014, Nat. Commun., 5, 5100, 10.1038/ncomms6100

2007, Appl. Phys. Lett., 91, 152907, 10.1063/1.2790481

2012, Phys. Rev. Lett., 108, 257601, 10.1103/PhysRevLett.108.257601

2013, J. Appl. Phys., 113, 214107, 10.1063/1.4808338

2014, Phys. Rev. B, 89, 100104(R), 10.1103/PhysRevB.89.100104

2012, Appl. Phys. Lett., 101, 242901, 10.1063/1.4770297

2016, Europhys. Lett., 115, 37001, 10.1209/0295-5075/115/37001

2016, Phase Transitions, 89, 785, 10.1080/01411594.2016.1199800

2015, J. Electroceram., 35, 135, 10.1007/s10832-015-0005-y

2012, Appl. Phys. Lett., 100, 192907, 10.1063/1.4714703

2014, Acta Mater., 80, 48, 10.1016/j.actamat.2014.07.058

2015, Phys. Rev. B, 91, 104108, 10.1103/PhysRevB.91.104108

2016, Ceram. Int., 42, 3598, 10.1016/j.ceramint.2015.11.023

2015, J. Appl. Phys., 117, 124107, 10.1063/1.4916713

2015, J. Appl. Phys., 118, 134104, 10.1063/1.4932641

2016, Sci. Rep., 6, 33392, 10.1038/srep33392

2015, J. Mater. Sci., 50, 6171, 10.1007/s10853-015-9174-y

2014, Appl. Phys. Lett., 104, 112901, 10.1063/1.4868414

2014, J. Am. Ceram. Soc., 97, 3244, 10.1111/jace.13137

2013, Appl. Phys. Lett., 103, 072905, 10.1063/1.4818732

2012, J. Am. Ceram. Soc., 96, 496, 10.1111/jace.12049

2014, J. Appl. Phys., 115, 054108, 10.1063/1.4864130

2014, Appl. Phys. Lett., 105, 032903, 10.1063/1.4891756

2014, J. Appl. Phys., 115, 044103, 10.1063/1.4863303

1979, Sov. Phys. Solid State, 21, 195

2015, Phys. Rev. Appl., 3, 064018, 10.1103/PhysRevApplied.3.064018

2014, Appl. Phys. Lett., 105, 112904, 10.1063/1.4896048

2014, J. Appl. Phys., 115, 144104, 10.1063/1.4870934

2015, J. Appl. Phys., 118, 124108, 10.1063/1.4931892

2012, Mater. Lett., 83, 20, 10.1016/j.matlet.2012.05.114

2014, J. Mater. Sci.: Mater. Electron., 25, 1817, 10.1007/s10854-014-1804-7

2012, Appl. Phys. Lett., 100, 252906, 10.1063/1.4730378

2016, Mater. Lett., 165, 131, 10.1016/j.matlet.2015.11.118

2011, J. Am. Ceram. Soc., 94, 3192, 10.1111/j.1551-2916.2011.04758.x

2013, J. Appl. Phys., 113, 184107, 10.1063/1.4804173

2014, J. Am. Ceram. Soc., 97, 2885, 10.1111/jace.13047

2010, J. Alloys Compd., 506, 131, 10.1016/j.jallcom.2010.06.157

2010, J. Am. Ceram. Soc., 93, 2942, 10.1111/j.1551-2916.2010.03907.x

2014, J. Appl. Phys., 115, 204107, 10.1063/1.4879395

2016, Strain Mechanisms in Lead-Free Ferroelectrics for Actuators, 1st ed.

2007, J. Appl. Phys., 101, 064111, 10.1063/1.2560441

2014, Ceram. Int., 40, 14907, 10.1016/j.ceramint.2014.06.086

2014, Appl. Phys. Lett., 105, 232903, 10.1063/1.4904019

2013, Appl. Phys. Lett., 103, 152904, 10.1063/1.4824730

2015, J. Appl. Phys., 118, 072002, 10.1063/1.4927802

2015, Materials, 8, 5452, 10.3390/ma8125452

2011, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1867, 10.1109/TUFFC.2011.2025

2007, Ann. Rev. Mater. Res., 37, 415, 10.1146/annurev.matsci.37.052506.084243

2015, Phys. Rev. B, 91, 104104, 10.1103/PhysRevB.91.104104

2014, Appl. Phys. Lett., 105, 161903, 10.1063/1.4898573

2017, Smart Mater. Struct., 26, 063001, 10.1088/1361-665X/aa590c

2015, J. Eur. Ceram. Soc., 35, 1209, 10.1016/j.jeurceramsoc.2014.10.016

2011, J. Mater. Res., 19, 834, 10.1557/jmr.2004.19.3.834

2014, J. Am. Ceram. Soc., 97, 2842, 10.1111/jace.13024

2013, Acta Mater., 61, 6418, 10.1016/j.actamat.2013.07.020

2015, Eng. Fract. Mech., 144, 68, 10.1016/j.engfracmech.2015.06.069

2015, Ceram. Int., 41, 1980, 10.1016/j.ceramint.2014.08.127

2001, Acta Mater., 49, 2751, 10.1016/S1359-6454(01)00169-0

1995, Ferroelectrics, 166, 11, 10.1080/00150199508223569

2007, Ann. Rev. Mater. Res., 37, 491, 10.1146/annurev.matsci.37.052506.084213

2015, J. Am. Ceram. Soc., 98, 2671, 10.1111/jace.13729

2007, J. Am. Ceram. Soc., 90, 673, 10.1111/j.1551-2916.2006.01482.x

2016, J. Am. Ceram. Soc., 99, 174, 10.1111/jace.13927

2016, J. Am. Ceram. Soc., 99, 1287, 10.1111/jace.14103

2017, J. Am. Ceram. Soc., 100, 4699, 10.1111/jace.15013

1998, J. Electroceram., 2, 85, 10.1023/A:1009922906146

2015, J. Alloys Compd., 632, 103, 10.1016/j.jallcom.2015.01.088

2016, J. Am. Ceram. Soc., 99, 2170, 10.1111/jace.14184

2013, Int. J. Appl. Ceram. Technol., 10, 701, 10.1111/j.1744-7402.2012.02771.x

2015, Mater. Lett., 154, 120, 10.1016/j.matlet.2015.03.121

2016, Ceram. Int., 42, 16109, 10.1016/j.ceramint.2016.07.125

2011, Scr. Mater., 65, 771, 10.1016/j.scriptamat.2011.07.028

2013, J. Alloys Compd., 581, 642, 10.1016/j.jallcom.2013.07.131

2012, J. Alloys Compd., 531, 46, 10.1016/j.jallcom.2012.03.110

2015, J. Mater. Sci.: Mater. Electron., 26, 5217, 10.1007/s10854-015-3054-8

2014, J. Am. Ceram. Soc., 97, 2076, 10.1111/jace.12900

2012, Ceram. Int., 38, 4761, 10.1016/j.ceramint.2012.02.063

2016, J. Am. Ceram. Soc., 99, 3659, 10.1111/jace.14409

2015, J. Am. Ceram. Soc., 98, 3127, 10.1111/jace.13713

2014, J. Eur. Ceram. Soc., 34, 1439, 10.1016/j.jeurceramsoc.2013.11.028

2011, J. Am. Ceram. Soc., 94, 3181, 10.1111/j.1551-2916.2011.04744.x

2012, Ceram. Int., 38, 4353, 10.1016/j.ceramint.2011.12.066

2016, J. Eur. Ceram. Soc., 36, 3391, 10.1016/j.jeurceramsoc.2016.05.033

2015, J. Alloys Compd., 640, 128, 10.1016/j.jallcom.2015.04.029

2013, J. Mater. Sci.: Mater. Electron., 24, 1551, 10.1007/s10854-012-0971-7

2015, J. Mater. Sci.: Mater. Electron., 26, 7331, 10.1007/s10854-015-3362-z

2011, J. Am. Ceram. Soc., 94, 4131, 10.1111/j.1551-2916.2011.04888.x

2011, Appl. Phys. Lett., 99, 122901, 10.1063/1.3640214

2014, J. Mater. Chem. C, 2, 4764, 10.1039/C4TC00155A

2013, J. Sol-Gel Sci. Technol., 66, 220, 10.1007/s10971-013-2996-7

2012, J. Eur. Ceram. Soc., 32, 517, 10.1016/j.jeurceramsoc.2011.09.020

2016, J. Alloys Compd., 666, 372, 10.1016/j.jallcom.2016.01.105

2016, J. Eur. Ceram. Soc., 36, 1017, 10.1016/j.jeurceramsoc.2015.11.039

2013, J. Am. Ceram. Soc., 96, 241, 10.1111/jace.12038

2015, J. Eur. Ceram. Soc., 35, 533, 10.1016/j.jeurceramsoc.2014.08.042

2006, J. Eur. Ceram. Soc., 26, 2777, 10.1016/j.jeurceramsoc.2005.06.026

1996, Jpn. J. Appl. Phys., Part 1, 35, 5099, 10.1143/JJAP.35.5099

2007, J. Appl. Phys., 101, 084105, 10.1063/1.2715522

2015, Appl. Phys. Lett., 107, 252905, 10.1063/1.4938134

2016, Appl. Phys. Rev., 3, 031102, 10.1063/1.4958327

2014, Ceram. Int., 40, 6841, 10.1016/j.ceramint.2013.11.147

2013, Mater. Lett., 97, 86, 10.1016/j.matlet.2012.12.067

2015, Ceram. Int., 41, 4035, 10.1016/j.ceramint.2014.11.094

2014, J. Am. Ceram. Soc., 97, 2164, 10.1111/jace.12939

2013, Appl. Phys. Lett., 103, 172904, 10.1063/1.4826933

2013, J. Electroceram., 32, 175, 10.1007/s10832-013-9864-2

2012, Appl. Phys. Lett., 100, 222910, 10.1063/1.4724216

2014, J. Mater. Sci., 49, 62, 10.1007/s10853-013-7650-9

2016, J. Appl. Phys., 119, 024108, 10.1063/1.4939762

2016, J. Mater. Sci.: Mater. Electron., 28, 588, 10.1007/s10854-016-5562-6

2017, J. Eur. Ceram. Soc., 37, 1421, 10.1016/j.jeurceramsoc.2016.11.030

2013, J. Alloys Compd., 576, 299, 10.1016/j.jallcom.2013.04.099

2016, RSC Advances, 6, 14084, 10.1039/C5RA26692K

2013, Appl. Phys. Lett., 102, 252904, 10.1063/1.4810916

2015, Appl. Phys. Lett., 107, 042902, 10.1063/1.4927558

2015, Appl. Phys. Lett., 106, 062901, 10.1063/1.4907774

2016, J. Am. Ceram. Soc., 99, 4022, 10.1111/jace.14456

2013, Appl. Phys. Lett., 103, 202903, 10.1063/1.4829635

2013, J. Alloys Compd., 550, 561, 10.1016/j.jallcom.2012.10.144

2015, Funct. Mater. Lett., 08, 1540001, 10.1142/S1793604715400019

2016, Sci. Rep., 6, 28677, 10.1038/srep28677

2016, J. Appl. Phys., 120, 074108, 10.1063/1.4961394

2016, Sci. Rep., 6, 32164, 10.1038/srep32164

2016, J. Phys. D: Appl. Phys., 49, 335301, 10.1088/0022-3727/49/33/335301

2017, J. Eur. Ceram. Soc., 37, 583, 10.1016/j.jeurceramsoc.2016.09.011

2006, Science, 311, 1270, 10.1126/science.1123811

2015, Int. J. Refrig., 57, 288, 10.1016/j.ijrefrig.2015.06.008

2016, Adv. Mater., 28, 4283, 10.1002/adma.201504299

2006, Science, 312, 242, 10.1126/science.1124005

2010, Nat. Nanotechnol., 5, 366, 10.1038/nnano.2010.46

2010, Ann. Biomed. Eng., 38, 2079, 10.1007/s10439-010-9977-6

2015, Acta Biomater., 24, 12, 10.1016/j.actbio.2015.07.010

2016, Adv. Mater., 28, 5470, 10.1002/adma.201505403

1978, IEEE Trans. Sonics Ultrason., 25, 153, 10.1109/T-SU.1978.31006

2014, Meas. Sci. Technol., 25, 012003, 10.1088/0957-0233/25/1/012003

1981, J. Biomed. Mater. Res., 15, 103, 10.1002/jbm.820150114

1997, Biomaterials, 18, 1531, 10.1016/S0142-9612(97)00087-2

2014, J. Biomed. Mater. Res. A, 102, 2089, 10.1002/jbm.a.34879

2013, Colloids Surf. B, 102, 312, 10.1016/j.colsurfb.2012.08.001

2009, Acta Biomater., 5, 2189, 10.1016/j.actbio.2009.02.013

1981, Nature, 289, 358, 10.1038/289358a0

1968, J. Dent. Res., 47, 121, 10.1177/00220345680470010501

J. Chem. Soc., Dalton Trans., 1984, 1091, 10.1039/DT9840001091

1963, Biochem. J., 87, 612, 10.1042/bj0870612

2018, J. Am. Ceram. Soc., 101, 440, 10.1111/jace.15193

2017, ACS Appl. Mater. Interfaces, 9, 266, 10.1021/acsami.6b14774

1997, Ceram. Eng. Sci. Proc., 18, 155, 10.1002/9780470294444.ch18

1994, Ceram. Eng. Sci. Proc., 15, 846, 10.1002/9780470314555.ch30

2000, J. Am. Ceram. Soc., 83, 445, 10.1111/j.1151-2916.2000.tb01217.x

1996, J. Am. Ceram. Soc., 79, 291, 10.1111/j.1151-2916.1996.tb08119.x

1999, Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, 1st ed. (

2003, J. Am. Ceram. Soc., 86, 1037, 10.1111/j.1151-2916.2003.tb03417.x

2004, J. Am. Ceram. Soc., 87, 1362, 10.1111/j.1151-2916.2004.tb07736.x

1996, J. Power Sources, 60, 199, 10.1016/S0378-7753(96)80011-5

1995, J. Eur. Ceram. Soc., 15, 795, 10.1016/0955-2219(95)00043-T

1982, J. Am. Ceram. Soc., 65, 167, 10.1111/j.1151-2916.1982.tb10388.x

2003, Jpn. J. Appl. Phys., Part 1, 42, 1, 10.1143/JJAP.42.1

2007, Acta Mater., 55, 675, 10.1016/j.actamat.2006.08.057

2012, Adv. Funct. Mater., 22, 797, 10.1002/adfm.201101301