BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection

Progress in Nuclear Energy - Tập 129 - Trang 103511 - 2020
Yas Al‒Hadeethi1, M.I. Sayyed2,3
1Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
3Department of Physics, Faculty of Science, Isra University, Amman, Jordan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akleyev, 2016, Normal tissue reactions to chronic radiation exposure in man, Radiat. Protect. Dosim., 71, 107, 10.1093/rpd/ncw207

Al-Hadeethi, 2019, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram. Int., 45, 24858, 10.1016/j.ceramint.2019.08.234

Al-Hadeethi, 2020, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software, Ceram. Int., 46, 6136, 10.1016/j.ceramint.2019.11.078

Al-Hadeethi, 2019, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int., 45, 20724, 10.1016/j.ceramint.2019.07.056

Al-Hadeethi, 2020, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses, Ceram. Int., 46, 2055, 10.1016/j.ceramint.2019.09.185

Al-Hadeethi, 2020, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int., 46, 251, 10.1016/j.ceramint.2019.08.258

Aşkın, 2019, Investigation of the gamma ray shielding parameters of (100-x) [0.5Li2O–0.1B2O3–0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids, 521, 119489, 10.1016/j.jnoncrysol.2019.119489

Aygün, 2020, Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives, Int. J. Radiat. Biol., 10.1080/09553002.2020.1811421

Bagheri, 2018, Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO, J. Non-Cryst. Solids, 479, 62, 10.1016/j.jnoncrysol.2017.10.006

Berna, 2019, Effect of addition of molybdenum on photon and fast neutron radiation shielding properties in ceramics, Ceram. Int., 45, 23681, 10.1016/j.ceramint.2019.08.082

Bootjomchai, 2014, Thermoluminescence dosimetric properties and effective atomic numbers of window glass, Nucl. Instrum. Methods Phys. Res. B, 323, 42, 10.1016/j.nimb.2014.01.008

Çelikbilek Ersundu, 2019, Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses, J. Non-Cryst. Solids, 524, 119648, 10.1016/j.jnoncrysol.2019.119648

Divina, 2020, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non Cryst. Solids, 545, 120269, 10.1016/j.jnoncrysol.2020.120269

Doweidar, 2018, FTIR investigation and mixed cation effect of Li2O-BaO-B2O3 glasses, Mater. Chem. Phys., 207, 259, 10.1016/j.matchemphys.2017.12.060

El Khayatt, 2010, Radiation shielding of concretes containing different lime/silica ratios, Ann. Nucl. Energy, 37, 991, 10.1016/j.anucene.2010.03.001

Fuochi, 2009, Dosimetric properties of gamma and electron-irradiated commercial window glasses, Nukleonika, 54, 39

Gaikwad, 2018, Shams AM Issa, and P. P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd., 765, 451, 10.1016/j.jallcom.2018.06.240

Gerward, 2004, WinXCom—a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040

Halimah, 2019, Influence of bismuth oxide on gamma radiation shielding properties of borotellurite glass, J. Non-Cryst. Solids, 512, 140, 10.1016/j.jnoncrysol.2019.03.004

Kaky, 2020, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system, J. Non-Cryst. Solids, 546, 120272, 10.1016/j.jnoncrysol.2020.120272

Kaur, 2019, Sonika Thakur, Prabhjot Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc., 206, 367, 10.1016/j.saa.2018.08.038

Kaur, 2019, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy, 113, 95, 10.1016/j.pnucene.2019.01.016

Kaçal, 2019, Evaluation of gamma-ray and neutron attenuation properties of some polymers, nuclear enginnering and technology, 51, 818, 10.1016/j.net.2018.11.011

Kurudirek, 2011, Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor, Nucl. Instrum. Methods Phys. Res. B, 269, 1071, 10.1016/j.nimb.2011.03.004

Obaid, 2018, Pawar, attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem., 148, 86, 10.1016/j.radphyschem.2018.02.026

Obaid, 2018, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem., 144, 356, 10.1016/j.radphyschem.2017.09.022

Rashad, 2020, Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3.Li2O.BaO, Ceram. Int., 46, 21000, 10.1016/j.ceramint.2020.05.165

Sadawy, 2019, Nuclear radiation shielding effectiveness and corrosion behavior of some steel alloys for nuclear reactor systems, Defence Technology, 15, 621, 10.1016/j.dt.2019.04.001

Şakar, 2020, Sayyed, Murat Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem., 166, 108496, 10.1016/j.radphyschem.2019.108496

Sayyed, 2017, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem., 130, 335, 10.1016/j.radphyschem.2016.09.019

Sayyed, 2020, Novel tellurite glass (60-x)TeO2-10GeO2-20ZnO-10BaO- xBi2O3 for radiation shielding, J. Alloys Compd., 844, 155668, 10.1016/j.jallcom.2020.155668

Sharifi, 2013, Comparison of shielding properties for ordinary, barite, serpentine andsteel–magnetite concretes using MCNP-4C code and available experimental results, Ann. Nucl. Energy, 53, 529, 10.1016/j.anucene.2012.09.015

Sharma, 2012, Effective atomic numbers for some calcium–strontium-borate glasses, Ann. Nucl. Energy, 45, 144, 10.1016/j.anucene.2012.03.005

Sharma, 2019, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results in Physics, 13, 102199, 10.1016/j.rinp.2019.102199

Taylor, 2012, Robust calculation of effective atomic numbers: the Auto-Zeff software, Med. Phys., 39, 1769, 10.1118/1.3689810

Tonguc, 2018, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem., 153, 86, 10.1016/j.radphyschem.2018.08.025

Zalegowski, 2020, Relation between microstructure, technical properties and neutron radiation shielding efficiency of concrete, Construct. Build. Mater., 235, 117389, 10.1016/j.conbuildmat.2019.117389