BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akleyev, 2016, Normal tissue reactions to chronic radiation exposure in man, Radiat. Protect. Dosim., 71, 107, 10.1093/rpd/ncw207
Al-Hadeethi, 2019, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram. Int., 45, 24858, 10.1016/j.ceramint.2019.08.234
Al-Hadeethi, 2020, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software, Ceram. Int., 46, 6136, 10.1016/j.ceramint.2019.11.078
Al-Hadeethi, 2019, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int., 45, 20724, 10.1016/j.ceramint.2019.07.056
Al-Hadeethi, 2020, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses, Ceram. Int., 46, 2055, 10.1016/j.ceramint.2019.09.185
Al-Hadeethi, 2020, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int., 46, 251, 10.1016/j.ceramint.2019.08.258
Aşkın, 2019, Investigation of the gamma ray shielding parameters of (100-x) [0.5Li2O–0.1B2O3–0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids, 521, 119489, 10.1016/j.jnoncrysol.2019.119489
Aygün, 2020, Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives, Int. J. Radiat. Biol., 10.1080/09553002.2020.1811421
Bagheri, 2018, Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO, J. Non-Cryst. Solids, 479, 62, 10.1016/j.jnoncrysol.2017.10.006
Berna, 2019, Effect of addition of molybdenum on photon and fast neutron radiation shielding properties in ceramics, Ceram. Int., 45, 23681, 10.1016/j.ceramint.2019.08.082
Bootjomchai, 2014, Thermoluminescence dosimetric properties and effective atomic numbers of window glass, Nucl. Instrum. Methods Phys. Res. B, 323, 42, 10.1016/j.nimb.2014.01.008
Çelikbilek Ersundu, 2019, Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses, J. Non-Cryst. Solids, 524, 119648, 10.1016/j.jnoncrysol.2019.119648
Divina, 2020, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non Cryst. Solids, 545, 120269, 10.1016/j.jnoncrysol.2020.120269
Doweidar, 2018, FTIR investigation and mixed cation effect of Li2O-BaO-B2O3 glasses, Mater. Chem. Phys., 207, 259, 10.1016/j.matchemphys.2017.12.060
El Khayatt, 2010, Radiation shielding of concretes containing different lime/silica ratios, Ann. Nucl. Energy, 37, 991, 10.1016/j.anucene.2010.03.001
Fuochi, 2009, Dosimetric properties of gamma and electron-irradiated commercial window glasses, Nukleonika, 54, 39
Gaikwad, 2018, Shams AM Issa, and P. P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd., 765, 451, 10.1016/j.jallcom.2018.06.240
Gerward, 2004, WinXCom—a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040
Halimah, 2019, Influence of bismuth oxide on gamma radiation shielding properties of borotellurite glass, J. Non-Cryst. Solids, 512, 140, 10.1016/j.jnoncrysol.2019.03.004
Kaky, 2020, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system, J. Non-Cryst. Solids, 546, 120272, 10.1016/j.jnoncrysol.2020.120272
Kaur, 2019, Sonika Thakur, Prabhjot Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc., 206, 367, 10.1016/j.saa.2018.08.038
Kaur, 2019, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy, 113, 95, 10.1016/j.pnucene.2019.01.016
Kaçal, 2019, Evaluation of gamma-ray and neutron attenuation properties of some polymers, nuclear enginnering and technology, 51, 818, 10.1016/j.net.2018.11.011
Kurudirek, 2011, Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor, Nucl. Instrum. Methods Phys. Res. B, 269, 1071, 10.1016/j.nimb.2011.03.004
Obaid, 2018, Pawar, attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem., 148, 86, 10.1016/j.radphyschem.2018.02.026
Obaid, 2018, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem., 144, 356, 10.1016/j.radphyschem.2017.09.022
Rashad, 2020, Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3.Li2O.BaO, Ceram. Int., 46, 21000, 10.1016/j.ceramint.2020.05.165
Sadawy, 2019, Nuclear radiation shielding effectiveness and corrosion behavior of some steel alloys for nuclear reactor systems, Defence Technology, 15, 621, 10.1016/j.dt.2019.04.001
Şakar, 2020, Sayyed, Murat Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem., 166, 108496, 10.1016/j.radphyschem.2019.108496
Sayyed, 2017, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses, Radiat. Phys. Chem., 130, 335, 10.1016/j.radphyschem.2016.09.019
Sayyed, 2020, Novel tellurite glass (60-x)TeO2-10GeO2-20ZnO-10BaO- xBi2O3 for radiation shielding, J. Alloys Compd., 844, 155668, 10.1016/j.jallcom.2020.155668
Sharifi, 2013, Comparison of shielding properties for ordinary, barite, serpentine andsteel–magnetite concretes using MCNP-4C code and available experimental results, Ann. Nucl. Energy, 53, 529, 10.1016/j.anucene.2012.09.015
Sharma, 2012, Effective atomic numbers for some calcium–strontium-borate glasses, Ann. Nucl. Energy, 45, 144, 10.1016/j.anucene.2012.03.005
Sharma, 2019, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results in Physics, 13, 102199, 10.1016/j.rinp.2019.102199
Taylor, 2012, Robust calculation of effective atomic numbers: the Auto-Zeff software, Med. Phys., 39, 1769, 10.1118/1.3689810
Tonguc, 2018, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem., 153, 86, 10.1016/j.radphyschem.2018.08.025