BaFe[CO3]2, a new double carbonate: Synthesis, structural characterisation, and geostability implications for high and low PT

Geochemistry - Tập 81 - Trang 125740 - 2021
Wen Liang1, Christine Peters2, Lin Li3, Olaf Leupold4, Heping Li1, Michael E. Böttcher2,5,6
1Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
2Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), D-18119 Warnemünde, Germany
3State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
4Deutsches Elektronen Synchrotron, DESY Group FS-PETRA-S, D-22607 Hamburg, Germany
5Marine Geochemistry, University of Greifswald, D-17489 Greifswald, Germany
6Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, D-18059 Rostock, Germany

Tài liệu tham khảo

Baron, 2006, Silicon avalanche photodiodes for direct detection of X-rays, J. Synchrotron Radiat., 13, 131, 10.1107/S090904950503431X Bischoff, 1985, Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study, Am. Mineral., 70, 581 Böttcher, 1997, Comment on "’Solid solution partitioning of Sr2+ and Ba2+, and Cd2+ to calcite" by A.J. Tesoriero and J.F. Pankow, Geochim. Cosmochim. Acta, 61, 661, 10.1016/S0016-7037(96)00323-7 Böttcher, 1998, Manganese(II) partitioning during experimental precipitation of rhodochrosite-calcite solid-solutions from aqueous solutions, Mar. Chem., 62, 287, 10.1016/S0304-4203(98)00039-5 Böttcher, 2000, Stable isotope fractionation during experimental formation of norsethite (BaMg[CO3]2): A mineral analogue of dolomite, Aquat. Geochem., 6, 201, 10.1023/A:1009646805933 Böttcher, 2010, Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulfates, EMU Notes in Mineralogy, 10, 139 Böttcher, 1997, The vibrational spectra of BaMg(CO3)2 (norsethite), Mineral. Mag., 61, 249, 10.1180/minmag.1997.061.405.08 Böttcher, 2012, BaMn[CO3]2 - a previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification, Geochemistry -CdE, 72, 85, 10.1016/j.chemer.2012.01.001 Busenberg, 1986, The solubility of BaCO3(cr) (witherite) in CO2-H2O solutions between 0 and 90°C, evaluation of the association constants of BaHCO3+(aq) and BaCO3°(aq) between 5 and 8O°C, and a preliminary evaluation of the thermodynamic properties of Ba2+(aq), Geochim. Cosmochim. Acta, 50, 2225, 10.1016/0016-7037(86)90077-3 Carothers, 1988, Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite, Geochim. Cosmochim. Acta, 52, 2445, 10.1016/0016-7037(88)90302-X Chang, 1964, Synthesis of MBa(CO3)2 compounds, Am. Mineral., 49, 1142 Chermak, 1989, Estimating the thermodynamic properties (ΔGf° and ΔHf°) of silicate minerals at 298 K from the sum of polyhedral contribution, Am. Mineral., 74, 1023 Chermak, 1990, Estimating the free energy of formation of silicate minerals at high temperatures from the sum of polyhedral contributions, Am. Mineral., 75, 1376 Damyanov, 1996, Mineralogy, geology and genesis of the Kremikovtsi carbonate-hosted submarine exhalative iron(+Mn)-barite (+base metals) deposit, West Balkan, Bulgaria, Proceedings of the Ann. Meet., Sofia, UNESCO Project, 356, 29 Dromgoole, 1990, Iron and manganese incorporation into calcite: effects of growth kinetics, temperature and solution chemistry, Chem. Geol., 81, 311, 10.1016/0009-2541(90)90053-A Effenberger, 2014, Synthetic norsethite, BaMg(CO3)2: revised crystal structure, thermal behaviour and displacive phase transition, Mineral. Mag., 78, 1589, 10.1180/minmag.2014.078.7.05 Effenberger, 1985, Single crystal X-ray investigation of norsethite, BaMg(CO3)2: one more mineral with an aplanar carbonate group, Zeitschrift für Kristallographie, 171, 275, 10.1524/zkri.1985.171.14.275 Egger, 2017, Iron oxide reduction in methane-rich deep Baltic Sea sediments, Geochim. Cosmochim. Acta, 207, 256, 10.1016/j.gca.2017.03.019 Frondel, 1955, Kutnahorite: A manganese dolomite, CaMn(CO3)2, Am. Mineral., 40, 748 1999, 123 Glynn, 1990, Solid-solution aqueous-solution equilibria - thermodynamic theory and representation, Am. J. Sci., 290, 164, 10.2475/ajs.290.2.164 Gütlich, 2011 Hazen, 1985, Comparative crystal chemistry and the polyhedral approach, Rev. Mineral. Geochem., 14, 317 Hoefs, 2018 Hood, 1974, Precipitation of norsethite at room temperature, Am. Mineral., 59, 471 Kapustin, 1965, Norsethite – the first find in USSR, Doklady Acad. Nauk USSR., 161, 922 Königsberger, 1998, Solid-solute phase equilibria in aqueous solutions X. Solubility constant and stability of norsethite, Monatshefte für Chemie, 129, 1061 Kulik, 2000, Application of Gibbs energy minimization to model early-diagenetic solid-solution aqueous-solution equilibria involving authigenic rhodochrosite in anoxic Baltic Sea sediments, Aquat. Geochem., 6, 147, 10.1023/A:1009694703207 La Iglesia, 1994, Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions, Geochimica et Cosmochimica Acta, 58, 3983, 10.1016/0016-7037(94)90261-5 Lepland, 1998, Manganese authigenesis in the landsort deep, Baltic Sea, Mar. Geol., 151, 1, 10.1016/S0025-3227(98)00046-2 Lepland, 2000, Accumulation of barium in recent Skagerrak sediments: sources and distribution controls, Mar. Geol., 163, 13, 10.1016/S0025-3227(99)00104-8 Liang, 2017, High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O4·2H2O) and its characterization, Acta Phys. Sin., 66, 206 Liang, 2018, High pressure synthesis of siderite (FeCO3) and its thermal expansion coefficient, High Temp. High Press., 47, 153 Liang, 2018, Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3), Phys. Chem. Miner., 45, 831, 10.1007/s00269-018-0965-y Liang, 2019, Crystal structure of norsethite-type BaMn(CO3)2 and its pressure-induced transition investigated by Raman spectroscopy, Phys. Chem. Miner., 46, 771, 10.1007/s00269-019-01038-w Lindner, 2018, On the growth of witherite and its replacement by the Mg-bearing double carbonate norsethite: Implications for the dolomite problem, Am. Mineral., 103, 252, 10.2138/am-2018-6232 Lindner, 2017, On the effect of aqueous barium on magnesite growth - A new route for the precipitation of the ordered anhydrous Mg-bearing double carbonate norsethite, Chem. Geol., 460, 93, 10.1016/j.chemgeo.2017.04.019 Lindner, 2018, On the growth of anhydrous Mg-bearing carbonates- Implications from norsethite growth kinetics, Geochimica et Cosmochimica Acta, 238, 424, 10.1016/j.gca.2018.07.013 Lippmann, 1967, Die Synthese des Norsethit, BaMg (CO3)2, bei ca.20°C und 1 at. Ein Modell zur Dolomitisierung, N. Jb. Miner. Abh, 23 Lippmann, 1968, Die Kristallstruktur von Norsethit, Tschermaks Mineral. Petrogr. Mitt, 12, 299, 10.1007/BF01130264 Lippmann, 1968, Syntheses of BaMg(CO3)2 (Norsethite) at 20°C and the formation of dolomite in sediments, 33 Lippmann, 1973, 5 Lippmann, 1977, The solubility products of complex minerals, mixed crystals, and three-layer clay minerals, Neues Jahrbuch Miner. Abh., 130, 243 Lippmann, 1980, Phase diagrams depicting aqueous solubility of binary mineral systems, Neues Jahrbuch Mineral. Abh., 139, 1 Liu, 2019, Emulation of short-range ordering within the Compound Energy Formalism Application to the calcite-magnesite solid solution, Calphad, 64, 115, 10.1016/j.calphad.2018.11.012 Middelburg, 1987, Manganese solubility control in marine pore waters, Geochimica et Cosmochimica Acta, 51, - 763 Mrose, 1961, Norsethite, BaMg(CO3)2, a new mineral from the Green River formation, Wyoming, Am. Mineral., 46, 420 Onac, 2002, Caves formed within Upper Cretaceous skarns at Băiţa, Bihor County, Romania: mineral deposition and speleogenesis, Can. Mineral., 40, 1693, 10.2113/gscanmin.40.6.1693 Peacor, 1987, Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite CaMn(CO3)2, Am. Mineral., 72, 319 Pippinger, 2014, High-pressure polymorphism and structural transitions of norsethite, BaMg(CO3)2, Phys. Chem. Miner., 41, 737, 10.1007/s00269-014-0687-8 Platt, 1990, The carbonatites and fenites of Chipman lake, Ontario, Can. Mineral., 28, 241 Prieto, 2000, Computing Lippmann diagrams from direct calculation of mixing properties of solid solutions: application to the Barite-Celestite system, Aquat. Geochem., 6, 133, 10.1023/A:1009642619137 Reeder, 1983, Crystal chemistry of the rhombohedral carbonates, 1 Reeder, 1989, Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Moessbauer, and TEM study, Am. Mineral., 74, 1159 Röhlsberger, 2004, 208 Ross, 1997, The equation of state and high-pressure behavior of magnesite, Am. Mineral., 82, 682, 10.2138/am-1997-7-805 Ross, 1992, High-pressure structural study of dolomite and ankerite, Am. Mineral., 77, 412 San Diego State University Foundation, 1982 Schmidt, 2013, Vibrational spectra of BaMn(CO3)2 and a re-analysis of the Raman spectrum of BaMg(CO3)2, Eur. J. Mineral., 25, 137, 10.1127/0935-1221/2013/0025-2272 Secco, 1999, Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from an Mg-carbonatite of the alkaline carbonatitic complex of Tapira (SE Brazil), Neues Jahrbuch fur Mineralogie, Monatshefte, 1999, 87 Shannon, 1969, Effective ionic radii in oxides and fluorides, Acta Crystallogr., B25, 925, 10.1107/S0567740869003220 Sheldrick, 2008, A short history of SHELX, Acta Crystallographica. A, 64, 112, 10.1107/S0108767307043930 Spahr, 2019, A new BaCa(CO3)2 polymorph, Acta Cryst. B, 75, 291, 10.1107/S2052520619003238 Speer, 1983, Crystal chemistry and phase relations of orthorhombic carbonates, Rev. in Mineral., 11 Sternbeck, 1996, Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea, Chem. Geol., 135, 55, 10.1016/S0009-2541(96)00104-0 Steyn, 1967, A new occurrence of norsethite, BaMg(CO3)2, Am. Mineral., 52, 1770 Sturhahn, 2000, CONUSS and PHOENIX: evaluation of nuclear resonant scattering data, Hyperfine Interact., 125, 149, 10.1023/A:1012681503686 Sundius, 1965, Norsethite from Langban, Arkiv for Mineralogi och Geologi, 4, 277 Sverjensky, 1992, A linear free energy relationship for crystalline solids and aqueous ions, Nature, 356, 231, 10.1038/356231a0 Usdowski, 1989, Synthesis of dolomite at 60°C in the system Ca2+-Mg2+-CO32−-Cl-H2O, Naturwissenschaften, 76, 374, 10.1007/BF00366209 Vinograd, 2009, Subsolidus phase relations in the CaCO3-MgCO3 system predicted from the excess enthalpies of supercell structures with single and double defects, Phys. Rev. B79, 10.1103/PhysRevB.79.104201 Warren, 2000, Dolomite: Occurrence, evolution and economically important associations, Earth-Sci. Rev., 52, 1, 10.1016/S0012-8252(00)00022-2 White, 1974, The carbonate minerals, 227 Wille, 2010, Nuclear resonant scattering at PETRA III : Brillant opportunities for nano – and extreme condition science, J. Phys. Conf. Ser., 217, 10.1088/1742-6596/217/1/012008 Winde, 1999 Zheng, 2016, Oxygen isotope fractionation in double carbonates, Isotopes Environ. Health Stud., 52, 29, 10.1080/10256016.2014.977278 Zidarov, 2009, Mn-rich norsethite from the Kremikovtsi ore deposit, Bulgaria, N. Jb. Mineral. Abh., 186, 321, 10.1127/0077-7757/2009/0152