Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tỷ lệ BTEX như một chỉ báo về các điểm nóng benzene và xu hướng phân tán trong các thành phố nơi có gió biển và gió đất chiếm ưu thế
Tóm tắt
Có những cấu hình không gian nhất định trong các thành phố tạo ra các khu vực có thông gió giảm, nơi mà ô nhiễm không khí có thể đạt tới mức độ nguy hiểm. Mặc dù hình thức đô thị đã được chỉ ra là một yếu tố ảnh hưởng đến ô nhiễm không khí, nhưng vai trò của nó trong việc tích tụ các hợp chất hữu cơ bay hơi chưa được đánh giá đầy đủ thông qua các phép đo thực địa. Để nghiên cứu tác động của hình thái đô thị đối với mức độ ô nhiễm không khí, chúng tôi đã đo nồng độ benzene, toluene, ethylbenzene và xylenes (BTEX) tại 44 địa điểm khác nhau trong thành phố, sử dụng bộ thu thập thụ động khuếch tán Radiello® trong một chiến dịch kéo dài 1 tuần. Công việc này trình bày một phương pháp nhằm lập bản đồ thành phố theo các khu vực với mức độ phân tán khí quyển khác nhau bằng cách phân tích tỷ lệ BTEX trong không khí xung quanh. Phương pháp áp dụng cho một thành phố ven biển (đặc trưng bởi các kiểu gió đồng nhất) đã phát hiện sự tồn tại của hai khu vực được phân biệt rõ ràng. Trong một khu vực, nồng độ benzene trung bình cao hơn 3.26 lần so với khu vực kia. Tuy nhiên, nồng độ trung bình của phần còn lại của BTEX gần như không khác nhau giữa hai khu vực. Những phát hiện này cho thấy các chất ô nhiễm phân hủy chậm (ví dụ: benzene) tập trung ở các khu vực thông gió kém, trong khi các chất ô nhiễm phân hủy nhanh không cho thấy sự tích tụ. Các kết luận của nghiên cứu này có thể đặc biệt hữu ích trong việc thiết kế các đánh giá về tiếp xúc cá nhân, tối ưu hóa hình thái đô thị và cải thiện vị trí của các trạm giám sát chất lượng không khí.
Từ khóa
#BTEX #ô nhiễm không khí #hình thái đô thị #nồng độ benzene #đánh giá tiếp xúc cá nhânTài liệu tham khảo
Ait-Helal W, Borbon A, Sauvage S, de Gouw JA, Colomb A, Gros V, Freutel F, Crippa M, Afif C, Baltensperger U, Beekmann M, Doussin J-F, Durand-Jolibois R, Fronval I, Grand N, Leonardis T, Lopez M, Michoud V, Miet K, Perrier S, Prévôt ASH, Schneider J, Siour G, Zapf P, Locoge N (2014) Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation. Atmos Chem Phys 14:10439–10464. https://doi.org/10.5194/acp-14-10439-2014
Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 86:69–201. https://doi.org/10.1021/cr00071a004
Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101. https://doi.org/10.1016/S1352-2310(99)00460-4
Atkinson R, Carter WPL (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84:437–470. https://doi.org/10.1021/cr00063a002
Atkinson R, Darnall KR, Lloyd AC, Winer AM, Pitts JN (2007) Kinetics and Mechanisms of the Reactions of the Hydroxyl Radical with Organic Compounds in the Gas Phase, in: Advances in Photochemistry. Wiley-Blackwell 375–488. https://doi.org/10.1002/9780470133415.ch5
Ballesta PP, Field RA, Connolly R, Cao N, Baeza Caracena A, De Saeger E (2006) Population exposure to benzene: One day cross-sections in six European cities. Atmos Environ 40:3355–3366. https://doi.org/10.1016/j.atmosenv.2006.01.053
Ballesta PP, Field RA, Saeger ED (2007) Population Exposure to Air Pollutants in Europe (People), in: Communicating European Research 2005. Springer Netherlands, Dordrecht 211–217. https://doi.org/10.1007/1-4020-5358-4_37
Batterman S, Hatzivasilis G, Jia C (2006) Concentrations and emissions of gasoline and other vapors from residential vehicle garages. Atmos Environ 40:1828–1844. https://doi.org/10.1016/j.atmosenv.2005.11.017
Berkowicz R, Hertel O, Larsen SE, Sørensen NN, Nielsen M (1997) Modelling traffic pollution in streets. National Environmental Research Institute.
Cocheo V, Boaretto C, Sacco P (1996) High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption. Am Ind Hyg Assoc J 57:897–904. https://doi.org/10.1080/15428119691014404
Directive (2008) 2008/50/EC of the European Parliament and of the Council, of 21 May 2008, on ambient air quality and cleaner air for Europe
BS EN 14662 (2005) Ambient air quality. Standard method for measurement of benzene concentrations. Pumped sampling followed by thermal desorption and gas chromatography.
Gelencsér A, Siszler K, Hlavay J (1997) Toluene−Benzene Concentration Ratio as a Tool for Characterizing the Distance from Vehicular Emission Sources. Environ Sci Technol 31:2869–2872. https://doi.org/10.1021/es970004c
Gonzalez-Flesca N, Nerriere E, Leclerc N, Le Meur S, Marfaing H, Hautemanière A, Zmirou-Navier D (2007) Personal exposure of children and adults to airborne benzene in four French cities. Atmos Environ 41:2549–2558. https://doi.org/10.1016/j.atmosenv.2006.11.025
Guicherit R (1997) Traffic as a source of volatile hydrocarbons in ambient air. Sci Total Environ 205:201–213. https://doi.org/10.1016/S0048-9697(97)00207-6
Gulia S, Shiva Nagendra SM, Khare M, Khanna I (2015) Urban air quality management-A review. Atmos Pollut Res 6:286–304. https://doi.org/10.5094/APR.2015.033
Harrison RM (2018) Urban atmospheric chemistry: A very special case for study. Npj Climate and Atmospheric Science 1(1) Art 1. https://doi.org/10.1038/s41612-017-0010-8
Spanish Statistical Office (2018) Instituto Nacional de Estadistica. (Spanish Statistical Office) [WWW Document]. URL https://www.ine.es/jaxiT3/Datos.htm?t=2883 (accessed 10.30.18)
Khoder MI (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41:554–566. https://doi.org/10.1016/j.atmosenv.2006.08.051
Klug W (1984) Atmospheric Diffusion (3rd Edition). F. Pasquill and F. B. Smith. Ellis Horwood, (John Wiley & Sons) Chichester, 1983. 437; £35; paperback £12.95. Quarterly Journal of the Royal Meteorological Society 110: 565–565. https://doi.org/10.1002/qj.49711046416
Lin C-C, Lin C, Hsieh L-T, Chen C-Y, Wang J-P (2011) Vertical and Diurnal Characterization of Volatile Organic Compounds in Ambient Air in Urban Areas. J Air Waste Manag Assoc 61:714–720. https://doi.org/10.3155/1047-3289.61.7.714
Liu Y, Cheng Z, Liu S, Tan Y, Yuan T, Yu X, Shen Z (2020) Quantitative structure activity relationship (QSAR) modelling of the degradability rate constant of volatile organic compounds (VOCs) by OH radicals in atmosphere. Science of The Total Environment 729:138871. https://doi.org/10.1016/j.scitotenv.2020.138871
Longhurst JWS, Brebbia CA (2013) Air Pollution XXI. Presented at the Twenty-first international conference on modelling, monitoring and management of air pollution, WIT Press.
Lu E, Jiawei H, Yang K (2021) Temporal-Spatial Variations of Atmospheric Static Stability: A Comparison of the Influences from Temperature and Its Vertical Difference. J Clim 2:1–40. https://doi.org/10.1175/JCLI-D-20-0615.1
Lynge E, Andersen A, Nilsson R, Barlow L, Pukkala E, Nordlinder R, Boffetta P, Grandjean P, Heikkilä P, Hörte LG, Jakobsson R, Lundberg I, Moen B, Partanen T, Riise T (1997) Risk of cancer and exposure to gasoline vapors. Am J Epidemiol 145:449–458
Mann HS, Crump D, Brown V (2001) Personal exposure to benzene and the influence of attached and integral garages. J R Soc Promot Health 121:38–46. https://doi.org/10.1177/146642400112100109
Miller L, Xu X, Wheeler A, Atari DO, Grgicak-Mannion A, Luginaah I (2011) Spatial Variability and Application of Ratios between BTEX in Two Canadian Cities. ScientificWorldJournal 11:2536–2549. https://doi.org/10.1100/2011/167973
Nelson PF, Quigley SM (1983) The m,p-xylenes:ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmospheric Environment (1967) 17, 659–662. https://doi.org/10.1016/0004-6981(83)90141-5
Ott MG, Townsend JC, Fishbeck WA, Langner RA (1978) Mortality among individuals occupationally exposed to benzene. Arch Environ Health 33:3–10
Peng Z, Day DA, Ortega AM, Palm BB, Hu W, Stark H, Li R, Tsigaridis K, Brune WH, Jimenez JL (2016) Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmos Chem Phys 16:4283–4305. https://doi.org/10.5194/acp-16-4283-2016
Safar AN, Yassin MF, Hamoda MF (2018) Indoor and outdoor air concentrations of volatile organic compounds in schools within different urban areas. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1869-6
Spanish Meteorology Agency AE de (2018) Agencia Estatal de Meteorología - AEMET. (Spanish Meteorology Agency) [WWW Document]. http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/Atlas-climatologico/Atlas.pdf (accessed 10.30.18).
Steinemann AC (2009) Fragranced consumer products and undisclosed ingredients. Environ Impact Assess Rev 29:32–38. https://doi.org/10.1016/j.eiar.2008.05.002
Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmospheric Environment 37(2):155–182. https://doi.org/10.1016/S1352-2310(02)00857-9. (ISSN 1352-2310)
Yuan C, Ng E, Norford LK (2014) Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build Environ 71:245–258. https://doi.org/10.1016/j.buildenv.2013.10.008
Zalel A, Yuval, Broday DM (2008) Revealing source signatures in ambient BTEX concentrations. Environ Pollut 156:553–562. https://doi.org/10.1016/j.envpol.2008.01.016
Zhong J, Cai X-M, Bloss WJ (2016) Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review. Environ Pollut 214:690–704. https://doi.org/10.1016/j.envpol.2016.04.052
Zhu H, Wang H, Jing S, Wang Y, Cheng T, Tao S, Lou S, Qiao L, Li L, Chen J (2018) Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. Atmos Environ 190:232–240. https://doi.org/10.1016/j.atmosenv.2018.07.026