BTBD9 và sự rối loạn dopaminergic trong bệnh sinh của hội chứng chân không yên

Brain Structure and Function - Tập 225 - Trang 1743-1760 - 2020
Shangru Lyu1, Atbin Doroodchi2, Hong Xing1, Yi Sheng3, Mark P. DeAndrade1, Youfeng Yang2, Tracy L. Johnson4, Stefan Clemens4, Fumiaki Yokoi1, Michael A. Miller2, Rui Xiao3, Yuqing Li1
1Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, USA
2Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
3Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, USA
4Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, USA

Tóm tắt

Hội chứng chân không yên (RLS) được đặc trưng bởi cảm giác muốn di chuyển chân, thường đi kèm với các cảm giác khó chịu. Các triệu chứng của RLS thường xảy ra vào ban đêm và có thể được giảm nhẹ bằng cách di chuyển. Các nghiên cứu di truyền đã liên kết các biến thể đa hình trong gen BTBD9 với nguy cơ cao hơn mắc RLS. Việc loại bỏ gen đồng hình BTBD9 ở chuột (Btbd9) và ruồi dẫn đến các kiểu hình giống như RLS. Hệ thống dopaminergic không hoạt động đúng cách có liên quan đến RLS. Tuy nhiên, chức năng của BTBD9 trong hệ thống dopaminergic và RLS vẫn chưa rõ ràng. Ở đây, chúng tôi đã sử dụng hệ thần kinh đơn giản của Caenorhabditis elegans. Sự mất chức năng của hpo-9, gen đồng hình của BTBD9 ở giun, dẫn đến hành vi đẻ trứng hyperactive. Phân tích sự tương tác di truyền giữa hpo-9 và các gen cho thụ thể dopamine (dop-1, dop-3) cho thấy hpo-9 và dop-1 hoạt động tương tự nhau. Các xét nghiệm reporter của dop-1 và dop-3 cho thấy việc loại bỏ hpo-9 dẫn đến sự tăng đáng kể biểu hiện của DOP-3. Điều này dường như được bảo tồn qua tiến hóa ở chuột với nồng độ mRNA của thụ thể D2 (D2R) tăng lên trong vùng striatum của chuột knockout Btbd9. Hơn nữa, protein D2R trong striatal giảm đáng kể và Dynamin I tăng lên. Tổng thể, hoạt động của các nơron DA trong substantia nigra không thay đổi, nhưng con đường D1R ngoại vi đã được khuếch đại ở chuột knockout Btbd9. Cuối cùng, chúng tôi đã tạo ra và đặc trưng hóa chuột knockout Btbd9 đặc hiệu cho nơron dopamine và phát hiện ra tình trạng buồn ngủ trong giai đoạn hoạt động, gợi ý rằng việc mất BTBD9 ở nơron dopamine là đủ để làm rối loạn giấc ngủ. Các kết quả của chúng tôi cho thấy hoạt động gia tăng trong con đường D1R, giảm hoạt động trong con đường D2R, hoặc cả hai có thể góp phần vào RLS.

Từ khóa

#hội chứng chân không yên #BTBD9 #hệ thống dopaminergic #gen đồng hình #nơron DA

Tài liệu tham khảo

Abetz L, Allen R, Follet A, Washburn T, Earley C, Kirsch J, Knight H (2004) Evaluating the quality of life of patients with restless legs syndrome. Clin Ther 26:925–935 Akhisaroglu M, Kurtuncu M, Manev H, Uz T (2005) Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol Biochem Behav 80:371–377 Allen RP, Connor JR, Hyland K, Earley CJ (2009) Abnormally increased CSF 3-Ortho-methyldopa (3-OMD) in untreated restless legs syndrome (RLS) patients indicates more severe disease and possibly abnormally increased dopamine synthesis. Sleep Med 10:123–128 Bachmann CG, Rolke R, Scheidt U, Stadelmann C, Sommer M, Pavlakovic G, Happe S, Treede RD, Paulus W (2010) Thermal hypoaesthesia differentiates secondary restless legs syndrome associated with small fibre neuropathy from primary restless legs syndrome. Brain 133:762–770 Bara-Jimenez W, Aksu M, Graham B, Sato S, Hallett M (2000) Periodic limb movements in sleep: state-dependent excitability of the spinal flexor reflex. Neurology 54:1609–1616 Ben-Sreti MM, Gonzalez JP, Sewell RD (1983) Differential effects of SKF 38393 and LY 141865 on nociception and morphine analgesia. Life Sci 33(Suppl 1):665–668 Berretta N, Bernardi G, Mercuri NB (2010) Firing properties and functional connectivity of substantia nigra pars compacta neurones recorded with a multi-electrode array in vitro. J Physiol 588:1719–1735 Brewer KL, Baran CA, Whitfield BR, Jensen AM, Clemens S (2014) Dopamine D3 receptor dysfunction prevents anti-nociceptive effects of morphine in the spinal cord. Front Neural Circuits 8:62 Castaneda TR, de Prado BM, Prieto D, Mora F (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36:177–185 Chase DL, Koelle MR (2004) Genetic analysis of RGS protein function in Caenorhabditis elegans. Methods Enzymol 389:305–320 Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in C. elegans. WormBook, Beijing, pp 1–15 Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103 Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. J Neurosci 24:11337–11345 Connor JR, Wang XS, Allen RP, Beard JL, Wiesinger JA, Felt BT, Earley CJ (2009) Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome. Brain 132:2403–2412 Dang MT, Yokoi F, McNaught KS, Jengelley TA, Jackson T, Li J, Li Y (2005) Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp Neurol 196:452–463 Dang MT, Yokoi F, Cheetham CC, Lu J, Vo V, Lovinger DM, Li Y (2012) An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 DeltaGAG knock-in mice. Behav Brain Res 226:465–472 DeAndrade MP, Yokoi F, van Groen T, Lingrel JB, Li Y (2011) Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism. Behav Brain Res 216:659–665 DeAndrade MP, Johnson RL Jr, Unger EL, Zhang L, van Groen T, Gamble KL, Li Y (2012a) Motor restlessness, sleep disturbances, thermal sensory alterations and elevated serum iron levels in Btbd9 mutant mice. Hum Mol Genet 21:3984–3992 DeAndrade MP, Zhang L, Doroodchi A, Yokoi F, Cheetham CC, Chen HX, Roper SN, Sweatt JD, Li Y (2012b) Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice. PLoS One 7:e35518 Earley CJ, Hyland K, Allen RP (2001) CSF dopamine, serotonin, and biopterin metabolites in patients with restless legs syndrome. Mov Disord 16:144–149 Earley CJ, Hyland K, Allen RP (2006) Circadian changes in CSF dopaminergic measures in restless legs syndrome. Sleep Med 7:263–268 Earley CJ, Kuwabara H, Wong DF, Gamaldo C, Salas R, Brasic J, Ravert HT, Dannals RF, Allen RP (2011) The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome. Sleep 34:341–347 Earley CJ, Kuwabara H, Wong DF, Gamaldo C, Salas RE, Brasic JR, Ravert HT, Dannals RF, Allen RP (2013) Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep 36:51–57 Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL (2001) Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav 69:409–418 Esteves AM, de Mello MT, Lancellotti CL, Natal CL, Tufik S (2004) Occurrence of limb movement during sleep in rats with spinal cord injury. Brain Res 1017:32–38 Ezak MJ, Ferkey DM (2010) The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One 5:e9487 Ferre S, Quiroz C, Guitart X, Rea W, Seyedian A, Moreno E, Casado-Anguera V, Diaz-Rios M, Casado V, Clemens S, Allen RP, Earley CJ, Garcia-Borreguero D (2017) Pivotal role of adenosine neurotransmission in Restless legs syndrome. Front Neurosci 11:722 Ferri R, Proserpio P, Rundo F, Lanza A, Sambusida K, Redaelli T, De Carli F, Nobili L (2015) Neurophysiological correlates of sleep leg movements in acute spinal cord injury. Clin Neurophysiol 126:333–338 Freeman A, Pranski E, Miller RD, Radmard S, Bernhard D, Jinnah HA, Betarbet R, Rye DB, Sanyal S (2012) Sleep fragmentation and motor restlessness in a Drosophila model of Restless legs syndrome. Curr Biol CB 22:1142–1148 Gao X, Zhang Y, Wu G (2000) Effects of dopaminergic agents on carrageenan hyperalgesia in rats. Eur J Pharmacol 406:53–58 Garcia Borreguero D, Winkelmann J, Allen RP (2017) Introduction: towards a better understanding of the science of RLS/WED. Sleep Med 31:1–2 Garcia-Borreguero D, Silber MH, Winkelman JW, Hogl B, Bainbridge J, Buchfuhrer M, Hadjigeorgiou G, Inoue Y, Manconi M, Oertel W, Ondo W, Winkelmann J, Allen RP (2016) Guidelines for the first-line treatment of restless legs syndrome/Willis-Ekbom disease, prevention and treatment of dopaminergic augmentation: a combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep Med 21:1–11 Gardner M, Rosell M, Myers EM (2013) Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J Vis Exp 80:e51203 Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117 Hodgkin J, Barnes TM (1991) More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci 246:19–24 Hore SK, Dumka VK, Kumar D, Tripathi HC, Tandan SK (1997) Central noradrenergic and dopaminergic modulation of brewer's yeast-induced inflammation and nociception in rats. Indian J Med Res 105:93–97 Iwata K, Ito K, Fukuzaki A, Inaki K, Haga T (1999) Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur J Biochem 263:596–602 Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:Research0002 Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237 Keeler BE, Baran CA, Brewer KL, Clemens S (2012) Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse. Exp Neurol 238:273–283 Keeler JF, Pretsell DO, Robbins TW (2014) Functional implications of dopamine D1 vs. D2 receptors: A 'prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience 282:156–175 Khaldy H, Leon J, Escames G, Bikjdaouene L, Garcia JJ, Acuna-Castroviejo D (2002) Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology 75:201–208 Kiritani T, Wickersham IR, Seung HS, Shepherd GM (2012) Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J Neurosci 32:4992–5001 Klaus A, Alves da Silva J, Costa RM (2019) What, If, and when to move: basal ganglia circuits and self-paced action initiation. Annu Rev Neurosci 42:459–483 Koblinger K, Fuzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ (2014) Characterization of A11 neurons projecting to the spinal cord of mice. PLoS One 9:e109636 Koenig JA, Edwardson JM (1997) Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci 18:276–287 Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y (2019a) Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 374:112123 Lyu S, Xing H, DeAndrade MP, Liu Y, Perez PD, Yokoi F, Febo M, Walters AS, Li Y (2019b) The role of BTBD9 in striatum and restless legs syndrome. eNeuro 0277:19 Lyu S, Xing H, DeAndrade MP, Perez PD, Zhang K, Liu Y, Yokoi F, Febo M, Walters AS, Li Y (2019c) The role of BTBD9 in the cerebral cortex and the pathogenesis of restless legs syndrome. Exp Neurol 323:113111 Marconi S, Scaglione C, Pizza F, Rizzo G, Plazzi G, Vetrugno R, La Manna G, Campieri C, Stefoni S, Montagna P, Martinelli P (2012) Group I nonreciprocal inhibition in restless legs syndrome secondary to chronic renal failure. Parkinsonism Relat Disord 18:362–366 Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34 Meneely S, Dinkins M-L, Kassai M, Lyu S, Liu Y, Lin C-T, Brewer K, Li Y, Clemens S (2018) Differential dopamine D1 and D3 receptor modulation and expression in the spinal cord of two mouse models of Restless legs syndrome. Front Behav Neurosci 12:199 Michaud M, Soucy JP, Chabli A, Lavigne G, Montplaisir J (2002) SPECT imaging of striatal pre- and postsynaptic dopaminergic status in restless legs syndrome with periodic leg movements in sleep. J Neurol 249:164–170 Ondo WG, He Y, Rajasekaran S, Le WD (2000) Clinical correlates of 6-hydroxydopamine injections into A11 dopaminergic neurons in rats: a possible model for restless legs syndrome. Mov Disord 15:154–158 Paladini CA, Robinson S, Morikawa H, Williams JT, Palmiter RD (2003) Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism. Proc Natl Acad Sci USA 100:2866–2871 Qu S, Le W, Zhang X, Xie W, Zhang A, Ondo WG (2007) Locomotion is increased in a11-lesioned mice with iron deprivation: a possible animal model for restless legs syndrome. J Neuropathol Exp Neurol 66:383–388 Ringstad N, Horvitz HR (2008) FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat Neurosci 11:1168–1176 Rooney KF, Sewell RD (1989) Evaluation of selective actions of dopamine D-1 and D-2 receptor agonists and antagonists on opioid antinociception. Eur J Pharmacol 168:329–336 Schafer WR (2005) Egg-laying. In: WormBook (ed) The C. elegans Research Community. WormBook. http://www.wormbook.org. Schafer WR, Kenyon CJ (1995) A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375:73–78 Schormair B et al (2017) Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol 16:898–907 Spijker S (2011) Dissection of Rodent Brain Regions. Neuroproteomics 57:13–26 Stefansson H et al (2007) A genetic risk factor for periodic limb movements in sleep. N Engl J Med 357:639–647 Stogios PJ, Prive GG (2004) The BACK domain in BTB-kelch proteins. Trends Biochem Sci 29:634–637 Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6:R82 Thompson D, Martini L, Whistler JL (2010) Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine. PLoS One 5:e11038 Thompson ML, Chen P, Yan X, Kim H, Borom AR, Roberts NB, Caldwell KA, Caldwell GA (2014) TorsinA rescues ER-associated stress and locomotive defects in C. elegans models of ALS. Dis Model Mech 7:233–243 Tings T, Baier PC, Paulus W, Trenkwalder C (2003) Restless legs syndrome induced by impairment of sensory spinal pathways. J Neurol 250:499–500 Trenkwalder C, Paulus W, Walters AS (2005) The restless legs syndrome. Lancet Neurol 4:465–475 Trenkwalder C, Allen R, Hogl B, Clemens S, Patton S, Schormair B, Winkelmann J (2018) Comorbidities, treatment, and pathophysiology in restless legs syndrome. Lancet Neurol 17:994–1005 Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647 Verma A, Kulkarni SK (1993) Modulatory role of D-1 and D-2 dopamine receptor subtypes in nociception in mice. J Psychopharmacol 7:270–275 Waggoner LE, Zhou GT, Schafer RW, Schafer WR (1998) Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21:203–214 Wall NR, De La Parra M, Callaway EM, Kreitzer AC (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79:347–360 Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15:6975–6985 Winkelmann J et al (2007) Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet 39:1000–1006 Yokoi F, Dang MT, Liu J, Gandre JR, Kwon K, Yuen R, Li Y (2015) Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 DeltaGAG heterozygous knock-in mice. Behav Brain Res 279:202–210 Yokota T, Hirose K, Tanabe H, Tsukagoshi H (1991) Sleep-related periodic leg movements (nocturnal myoclonus) due to spinal cord lesion. J Neurol Sci 104:13–18 Zarrindast MR, Moghaddampour E (1989) Opposing influences of D-1 and D-2 dopamine receptors activation on morphine-induced antinociception. Arch Int Pharmacodyn Ther 300:37–50 Zhao H, Zhu W, Pan T, Xie W, Zhang A, Ondo WG, Le W (2007) Spinal cord dopamine receptor expression and function in mice with 6-OHDA lesion of the A11 nucleus and dietary iron deprivation. J Neurosci Res 85:1065–1076