BRAF-Oncogene-Induced Senescence and the Role of Thyroid-Stimulating Hormone Signaling in the Progression of Papillary Thyroid Carcinoma
Tóm tắt
Oncogene-induced senescence (OIS) explains the phenomenon of cellular senescence triggered by the action of oncogenes. It is a mechanism adopted by a cell to inhibit progression of benign tumors into malignancy, occurs in premalignant lesions, and is almost never present in malignant lesions. BRAF mutations occur in about 40–45% of all papillary thyroid carcinomas (PTCs) and of which 99.7% is the BRAFV600E mutation. A unique phenotype of the BRAFV600E mutation is the upregulation of the thyroid-stimulating hormone receptor (TSHR) on thyrocyte membranes. Despite the overexpression of the receptor, BRAFV600E cells undergo cell cycle arrest leading to OIS via a negative feedback signaling mechanism. A simultaneous increase in serum thyroid-stimulating hormone (TSH) in response to hypothyroidism (common in autoimmune diseases such as Hashimoto’s thyroiditis) would cause senescent tumor cells to overcome OIS and proceed towards malignancy, hence showing the importance of TSH/TSHR signaling in the development of PTCs. Increase in TSH/TSHR signaling triggers an increase in levels of downstream enzymes such as manganese superoxide dismutase (MnSOD) and dual-specific phosphatase 6 (DUSP6) which eventually results in the production of oncogenic proteins such as c-Myc. Therefore, the detection of these genetic alterations as effective biomarkers for premalignant lesions of PTC is important in clinical settings and techniques such as polymerase chain reaction-mediated restriction fragment length polymorphism (PCR-RFLP) and real-time PCR can be used to detect the BRAFV600E point mutation and overexpression of TSHR, MnSOD, and DUSP6, respectively.
Tài liệu tham khảo
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132(3):363–374. https://doi.org/10.1016/j.cell.2007.12.032
Serrano M, Lin AW, Mccurrach ME, Beach D, Lowe SW (1997) Oncogenic Ras provokes premature cell senescence associated with accumulation of p53 and p16 INK4a. Cell 88(5):593–602. https://doi.org/10.1016/S0092-8674(00)81902-9
Bennett DC (2003) Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22(20):3063–3069. https://doi.org/10.1038/sj.onc.1206446 3063–3069
Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11(11):527–531. https://doi.org/10.1016/S0962-8924(01)02151-1
Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35(3):317–329. https://doi.org/10.1016/S0531-5565(00)00083-8
Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf : progress and puzzles. Curr Opin Genet Dev 13(1):77–83. https://doi.org/10.1016/S0959-437X(02)00013-8
Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809. https://doi.org/10.1038/sj.onc.1210950
Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6(6):472–476. https://doi.org/10.1038/nrc1884
Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Majoor M, Shay JW, Mooi WJ, Kuilman T, Van Der Horst CMAM, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724. https://doi.org/10.1038/nature03890
Espinosa AJ, Gilbert J, Fagin (2015) BRAF c.1799T>A (V600E) mutation in thyroid cancer. My cancer genome. https://mycancergenome.org/content/disease/thyroid-cancer/braf/54. Accessed 01 Aug 2017
Nikiforov YE (2008) Thyroid Carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21:S37–S43. https://doi.org/10.1038/modpathol.2008.10
Li X (2014) BRAF mutations: prognostic and therapeutic markers in human cancers. Austin J Clin Pathol 1:1–2
American Cancer Society. The thyroid gland. https://www.cancer.org/cancer/thyroid-cancer.html. Accessed 02 Aug 2017
Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LDR, Barletta JA, Wenig BM, al Ghuzlan A, Kakudo K, Giordano TJ, Alves VA, Khanafshar E, Asa SL, el-Naggar AK, Gooding WE, Hodak SP, Lloyd RV, Maytal G, Mete O, Nikiforova MN, Nosé V, Papotti M, Poller DN, Sadow PM, Tischler AS, Tuttle RM, Wall KB, LiVolsi VA, Randolph GW, Ghossein RA (2016) Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2(8):1023–1029. https://doi.org/10.1001/jamaoncol.2016.0386
Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290. https://doi.org/10.1038/sj.onc.1210421
Johnson R, Spiegelman B, Hanahan D, Wisdom R (1996) Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16(8):4504–4511. https://doi.org/10.1128/MCB.16.8.4504
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Zou M, Baite EY, Al-rijjal RA, Parhar RS, Al-mohanna FA et al (2015) TSH overcomes Braf V600E-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene 35(15):1909–1918. https://doi.org/10.1038/onc.2015.253
Kim YH, Choi YW (2014) TSH signaling overcomes B-RafV600E–induced senescence in papillary thyroid carcinogenesis. Neoplasia 16(12):1107–1120. https://doi.org/10.1016/j.neo.2014.10.005
Cisowski J, Sayin VI, Liu M, Karlsson C, Bergo MO (2015) Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF. Oncogene 35(10):1328–1333. https://doi.org/10.1038/onc.2015.186
Vizioli MG, Possik PA, Tarantino E, Meissl K, Borrello MG, Miranda C, Anania MC, Pagliardini S, Seregni E, Pierotti MA, Pilotti S, Peeper DS, Greco A (2011) Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr Relat Cancer 18(6):743–757. https://doi.org/10.1530/ERC-11-0240
Matsumoto H, Sakamoto A, Fujiwara M (2008) Decreased expression of the thyroid-stimulating hormone receptor in poorly-differentiated carcinoma of the thyroid. Oncol Rep 19(6):1405–1411
Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA (2015) Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab 91(11):4295–4301. https://doi.org/10.1210/jc.2006-0527
Haymart MR, Glinberg SL, Liu J, Sippel RS, Jaume JC, Chen H (2009) Higher serum TSH in thyroid cancer patients occurs independent of age and correlates with extrathyroidal extension. Clin Endocrinol 71(3):434–4399. https://doi.org/10.1111/j.1365-2265.2008.03489.x
Polyzos SA, Efstathiadou Z, Poulakos P, Slavakis A, So D et al (2008) Serum thyrotropin concentration as a biochemical predictor of thyroid malignancy in patients presenting with thyroid nodules. J Cancer Res Clin Oncol 134(9):953–960. https://doi.org/10.1007/s00432-008-0373-7
Shi L, Li Y, Guan H, Li C, Shi L, Shan Z, Teng W (2012) Usefulness of serum thyrotropin for risk prediction of differentiated thyroid cancers does not apply to microcarcinomas: results of 1,870 Chinese patients with thyroid nodules. Endocr J 59(11):973–980. https://doi.org/10.1507/endocrj.EJ12-0154
Boelaert K (2009) The association between serum TSH concentration and thyroid cancer. Endocr Relat Cancer 16(4):1065–1072. https://doi.org/10.1677/ERC-09-0150
Nishida S, Nakano T, Kimoto S, Kusunoki T, Suzuki K, Taniguchi N, Murata K, Tomura TT (1997) Induction of manganese superoxide dismutase by thyroid stimulating hormone in rat thyroid cells. FEBS Lett 416(1):69–71. https://doi.org/10.1016/S0014-5793(97)01171-X
Franco AT, Malaguarnera R, Refetoff S, Liao X, Kimura S et al (2011) Receptor thyrotrophin signaling dependence in mice tumor initiation thyroid. Proc Natl Acad Sci U S A 108(4):1615–1620. https://doi.org/10.1073/pnas.1015557108 (former 28)
Rosignolo F, Maggisano V, Sponziello M, Celano M, Di Gioia CRT, D’Agostino M, Giacomelli L, Verrienti A, Dima M, Pecce V, Durante C (2015) Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J Endocrinol Investig 38(12):1283–1289. https://doi.org/10.1007/s40618-015-0309-4
Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E, Cheng SY (2013) Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 154(1):25–35. https://doi.org/10.1210/en.2012-1728
Romitti M, Wajner SM, Zennig N, Goemann IM, Bueno AL, Meyer EL, Maia AL (2012) Increased type 3 deiodinase expression in papillary thyroid carcinoma. Thyroid 22(9):897–904. https://doi.org/10.1089/thy.2012.0031
Romitti M, Wajner SM, Ceolin L, Ferreira CV, Ribeiro RV et al (2016) MAPK and SHH pathways modulate type 3 deiodinase expression in papillary thyroid carcinoma. Endocr Relat Cancer 23(3):135–146. https://doi.org/10.1530/ERC-15-0162
Cantara S, D’Angeli F, Toti P, Lignitto L, Castagna MG, Capuano S, Prabhakar BS, Feliciello A, Pacini F (2012) Expression of the ring ligase PRAJA2 in thyroid cancer. J Clin Endocrinol Metab 97(11):4253–4259. https://doi.org/10.1210/jc.2012-2360
Zou M, Baitei EY, Al-Rijjal RA, Parhar RS, Al-Mohanna FA, Kimura S, Pritchard C, BinEssa H, Alanazi AA, Alzahrani AS, Akhtar M, Assiri AM, Meyer BF, Shi Y (2015) KRASG12D-mediated oncogenic transformation of thyroid follicular cells requires long-term TSH stimulation and is regulated by SPRY1. Lab Investig 95(11):1269–1277. https://doi.org/10.1038/labinvest.2015.90
Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, Smith R (2016) Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer 24(6):R191–R202. https://doi.org/10.1530/ERC-17-0010
Roger P, Taton M, Sande JVAN, Dumont JE (1988) Mitogenic effects of thyrotropin and adenosine 3′,5′-monophosphate in differentiated normal human thyroid cells in vitro. J Clin Endocrinol Metab 66(6):1158–1165. https://doi.org/10.1210/jcem-66-6-1158
Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13(3):596–611. https://doi.org/10.1210/edrv-13-3-596
Bruno R, Ferretti E, Tosi E, Arturi F, Giannasio P, Mattei T, Scipioni A, Presta I, Morisi R, Gulino A, Filetti S, Russo D (2005) Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin. J Clin Endocrinol Metab 90(10):5692–5697. https://doi.org/10.1210/jc.2005-0800
Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199. https://doi.org/10.1038/nrc3431
Khan MS, Pandith AA (2014) Epigenetic silencing of TSHR gene in thyroid cancer patients in relation to their BRAF V600E mutation status. Endocrine 47(2):449–455. https://doi.org/10.1007/s12020-014-0319-6
Lu C, Zhao L, Ying H, Willingham MC, Cheng S-y (2010) Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. Endocrinology 151(4):1929–1939. https://doi.org/10.1210/en.2009-1017
Innocenti DD, Romeo P, Tarantino E, Sensi M, Cassinelli G et al (2013) DUSP6 / MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocr Relat Cancer 20(1):23–37. https://doi.org/10.1530/ERC-12-0078 23–37
Williams SMG, Reczek EE, Johnson BW, Mcgillicuddy LT, Johannessen CM et al (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10(6):459–472. https://doi.org/10.1016/j.ccr.2006.10.003
Nollau P, Wagener C (1997) Methods for detection of point mutations: performance and quality assessment. Clin Chem 43(7):1114–1128
Ranjbari N, Almasi S, Mohammadi-Asl J, Rahim F (2013) BRAF mutations in Iranian patients with papillary thyroid carcinoma. Asian Pac J Cancer Prev 14(4):2521–2523. https://doi.org/10.7314/APJCP.2013.14.4.2521
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–445. https://doi.org/10.1093/nar/29.9.e45
Agretti P, Chiovato L, De Marco G, Marcocci C, Mazzi B (2002) Real-time PCR provides evidence for thyrotropin receptor mRNA expression in orbital as well as in extraorbital tissues. Eur J Endocrinol 147(6):733–739. https://doi.org/10.1530/eje.0.1470733
Cheng L, Jin Y, Liu M, Ruan M, Chen L (2017) HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget 8(12):19843–19854. 10.18632/oncotarget.15773
Anelli V, Villefranc JA, Chhangawala S, Martinez-McFaline R, Riva E, Nguyen A, Verma A, Bareja R, Chen Z, Scognamiglio T, Elemento O, Houvras Y (2017) Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. elife 6:e20728. https://doi.org/10.7554/eLife.20728