BLOOD FLOW IN ARTERIES

Annual Review of Fluid Mechanics - Tập 29 Số 1 - Trang 399-434 - 1997
David N. Ku1
1G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405

Tóm tắt

▪ Abstract  Blood flow in arteries is dominated by unsteady flow phenomena. The cardiovascular system is an internal flow loop with multiple branches in which a complex liquid circulates. A nondimensional frequency parameter, the Womersley number, governs the relationship between the unsteady and viscous forces. Normal arterial flow is laminar with secondary flows generated at curves and branches. The arteries are living organs that can adapt to and change with the varying hemodynamic conditions. In certain circumstances, unusual hemodynamic conditions create an abnormal biological response. Velocity profile skewing can create pockets in which the direction of the wall shear stress oscillates. Atherosclerotic disease tends to be localized in these sites and results in a narrowing of the artery lumen—a stenosis. The stenosis can cause turbulence and reduce flow by means of viscous head losses and flow choking. Very high shear stresses near the throat of the stenosis can activate platelets and thereby induce thrombosis, which can totally block blood flow to the heart or brain. Detection and quantification of stenosis serve as the basis for surgical intervention. In the future, the study of arterial blood flow will lead to the prediction of individual hemodynamic flows in any patient, the development of diagnostic tools to quantify disease, and the design of devices that mimic or alter blood flow. This field is rich with challenging problems in fluid mechanics involving three-dimensional, pulsatile flows at the edge of turbulence.

Từ khóa


Tài liệu tham khảo

10.1115/1.2895710

10.1016/0021-9290(93)90044-F

10.1161/01.ATV.6.3.312

10.1093/cvr/22.5.340

10.1115/1.3168364

Biz S, 1993, Circ. Suppl., 88, 1363

10.1017/S0022112085002427

Caro CG, 1978, Circulation.

10.1016/0002-9149(81)90156-9

10.1016/S0741-5214(95)70136-2

10.1126/science.168.3934.977

10.1161/01.ATV.5.1.19

Dean WR, 1928, Philos. Mag. Ser., 7, 675

10.3233/BIR-1994-31503

Dawson DL, Strandness DEJr . 1994. “Duplex scanning.” In Strandness & van Breda, pp. 157–99

Downing JM, 1993, ASME Adv. Bioeng. BED, 26, 137

10.1115/1.3168365

10.1115/1.3138636

10.1093/jnci/86.4.293

10.1016/0735-1097(94)90657-2

10.1161/01.CIR.54.3.365

10.1115/1.3149581

10.1016/0021-9150(86)90008-0

10.1007/978-1-4757-3884-1

10.1097/00005344-199300221-00002

10.1017/S0022112082001153

10.1115/1.3138662

Glagov S, 1988, Arch. Pathol. Lab. Med., 112, 1018

10.1161/01.RES.43.2.242

He X. 1993.Numerical simulations of blood flow in human coronary arteries. PhD thesis. Georgia Institute of Technol., Atlanta

10.1115/1.2895742

10.1115/1.2795948

10.1007/BF02368163

Hellums JD, 1993, Ann. Biomed. Eng., 1994, 445

10.1115/1.2891226

10.3233/BIR-1988-25604

10.1016/S0006-3495(86)83535-4

Kamiya A, 1980, Am. J. Physiol., 239, H14

10.1016/S0026-2862(79)80001-1

10.1115/1.2895427

10.1016/0021-9290(81)90038-5

10.1016/0735-1097(95)00141-L

10.1115/1.2891212

10.1016/0021-9290(87)90048-0

Ku DN, Giddens DP. 1983. Pulsatile flow visualization in the carotid artery: arteriosclerosis. 3:31–39

10.1067/mva.1987.avs0060274

Ku DN, 1993, Suppl. to Circulation, 88, 1362

10.1016/0301-5629(85)90003-1

10.1161/01.ATV.5.3.293

10.1115/1.2891209

10.1016/0021-9290(90)90052-5

10.1115/1.3168386

Markou CP, 1993, Adv. Bioeng. ASME BED, 26, 555

McDonald DA, 1974, Blood Flow in Arteries.

10.1007/BF02368217

10.1002/mrm.1910080104

10.1007/BF02368248

10.1115/1.2891400

10.1152/jappl.1994.76.4.1520

Moore JE, 1995, 1995 Bioeng. Conf. ASME, 29, 229

10.1016/0021-9150(94)90207-0

10.1093/cvr/6.1.1

Nichols WW, 1990, McDonald's Blood Flow in Arteries.

10.1056/NEJM199108153250701

10.1067/mva.1990.24365

10.1002/jmri.1880020610

10.1002/mrm.1910330208

Oshinski JN, 1995, ASME Proc. Bioeng. Conf., 29, 371

10.1017/CBO9780511896996

10.1016/0021-9290(95)95273-8

10.1115/1.2895428

10.1016/0021-9991(89)90213-1

Powell BE. 1991.Experimental measurements of flow through stenotic collapsible tubes. MS thesis. Georgia Inst. of Tech. Atlanta

Reuderink PJ. 1991.Analysis of the flow in a 3D distensible model of the carotid artery bifurcation. PhD dissertation. Tech. Univ. of Eindhoven. Eindhoven, Netherlands.

10.1353/pbm.1970.0054

10.1115/1.2891172

Salam TA, 1996, J. Vasc. Invest., 2, 12

10.1016/0167-5273(82)90006-7

10.1115/1.3426281

10.1115/1.2895795

10.1002/jmri.1880050610

Strandness DE, 1994, Vascular Diseases: Surgical and Interventional Therapy.

Tang TD. 1990.Periodic flow in a bifurcating tube at moderate Reynolds number. PhD dissertation. Georgia Inst. Tech., Atlanta

10.1115/1.2895709

10.1113/jphysiol.1955.sp005276

10.1115/1.2895735

10.1115/1.3426241

Yucel EK. 1994. Magnetic resonance angiography. In strandness & van Breda 1994, pp. 289–302

10.1067/mva.1987.avs0050413