BINet: Bidirectional interactive network for salient object detection
Tài liệu tham khảo
Cong, 2019, Review of visual saliency detection with comprehensive information, IEEE Trans. Circuits Syst. Video Technol., 29, 2941, 10.1109/TCSVT.2018.2870832
M.M. Cheng, F.L. Zhang, N.J. Mitra, X. Huang, S.M. Hu, RepFinder: Finding approximately repeated scene elements for image editing, 2010, doi: 10.1145/1778765.1778820.
U. Rutishauser, D. Walther, C. Koch, P. Perona, Is bottom-up attention useful for object recognition?, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, vol. 2, doi: 10.1109/cvpr.2004.1315142.
S. Hong, T. You, S. Kwak, B. Han, Online tracking by learning discriminative saliency map with convolutional neural network, in 32nd International Conference on Machine Learning, ICML 2015, 2015, vol. 1.
Liu, 2020, Aggregation signature for small object tracking, IEEE Trans. Image Process., 29, 1738, 10.1109/TIP.2019.2940477
J. He et al., Mobile product search with Bag of Hash Bits and boundary reranking, in: CVPR, 2012, doi: 10.1109/CVPR.2012.6248030.
C. Craye, D. Filliat, J.F. Goudou, Environment exploration for object-based visual saliency learning, in Proceedings – IEEE International Conference on Robotics and Automation, 2016, vol. 2016-June, doi: 10.1109/ICRA.2016.7487379.
M. M. Cheng, N.J. Mitra, X. Huang, P.H.S. Torr, S.M. Hu, Global contrast based salient region detection,” IEEE T-PAMI, vol. 37, no. 3, 2015, doi: 10.1109/TPAMI.2014.2345401.
Dominik A. Klein, Simone Frintrop. Center-surround divergence of feature statistics for salient object detection. In ICCV, pages 2214–2219. IEEE, 2011.
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, S. Li, Salient object detection: A discriminative regional feature integration approach, in CVPR, 2013, doi: 10.1109/CVPR.2013.271.
Zhang, 2017, A novel graph-based optimization framework for salient object detection, Pattern Recognit., 64, 39, 10.1016/j.patcog.2016.10.025
Shijian, 2012, Saliency modeling from image histograms, 321
Shijian, 2013, Robust and efficient saliency modeling from image co-occurrence histograms, IEEE Trans. Pattern Anal. Mach. Intell., 36, 195, 10.1109/TPAMI.2013.158
Y. Pang, X. Zhao, L. Zhang, H. Lu, Multi-Scale Interactive Network for Salient Object Detection, in CVPR, 2020, doi: 10.1109/cvpr42600.2020.00943.
J. Wei, S. Wang, Q. Huang, F3Net: Fusion, Feedback and Focus for Salient Object Detection, in: AAAI, 2020, doi: 10.1609/aaai.v34i07.6916.
J. J. Liu, Q. Hou, M. M. Cheng, J. Feng, and J. Jiang, A simple pooling-based design for real-time salient object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, doi: 10.1109/CVPR.2019.00404.
Q. Hou, M.M. Cheng, X. Hu, A. Borji, Z. Tu, P.H.S. Torr, Deeply Supervised Salient Object Detection with Short Connections, IEEE T-PAMI, vol. 41, no. 4, 2019, doi: 10.1109/TPAMI.2018.2815688.
Z. Wu, L. Su, Q. Huang, Cascaded partial decoder for fast and accurate salient object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, doi: 10.1109/CVPR.2019.00403.
Chen, 2021, BPFINet: boundary-aware progressive feature integration network for salient object detection, Neurocomputing, 451, 152, 10.1016/j.neucom.2021.04.078
X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, M. Jagersand, BASNet: Boundary-Aware Salient Object Detection, pp. 7479–7489.
Z. Chen, Q. Xu, R. Cong, Q. Huang, Global Context-Aware Progressive Aggregation Network for Salient Object Detection, in AAAI, 2020, doi: 10.1609/aaai.v34i07.6633.
Qin, 2020, U2-Net: Going deeper with nested U-structure for salient object detection, Pattern Recognit., 106, 107404, 10.1016/j.patcog.2020.107404
T. Wang, A. Borji, L. Zhang, P. Zhang, H. Lu, A Stagewise Refinement Model for Detecting Salient Objects in Images, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-October, doi: 10.1109/ICCV.2017.433.
T. Zhao, X. Wu, Pyramid feature attention network for saliency detection, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, doi: 10.1109/CVPR.2019.00320.
W. Wang, S. Zhao, J. Shen, S. C. H. Hoi, A. Borji, Salient object detection with pyramid attention and salient edges, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, no. c, pp. 1448–1457, 2019, doi: 10.1109/CVPR.2019.00154.
M. Feng, H. Lu, E. Ding, Attentive feedback network for boundary-aware salient object detection, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, doi: 10.1109/CVPR.2019.00172.
L. Zhu et al., Aggregating attentional dilated features for salient object detection, IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 10, 2020, doi: 10.1109/TCSVT.2019.2941017.
X. Zhao, Y. Pang, L. Zhang, H. Lu, L. Zhang, Suppress and Balance: A Simple Gated Network for Salient Object Detection, in Computer Vision -- ECCV 2020, 2020, pp. 35–51.
P. Zhang, D. Wang, H. Lu, H. Wang, X. Ruan, Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-October, doi: 10.1109/ICCV.2017.31.
P. Zhang, D. Wang, H. Lu, H. Wang, B. Yin, Learning Uncertain Convolutional Features for Accurate Saliency Detection, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-October, doi: 10.1109/ICCV.2017.32.
Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, P.M. Jodoin, Non-local deep features for salient object detection, in Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-January, doi: 10.1109/CVPR.2017.698.
S. Xie, Z. Tu, Holistically-nested edge detection, in CVPR, 2015, doi: 10.1109/ICCV.2015.164.
Z. Deng et al., R3Net: Recurrent residual refinement network for saliency detection, in IJCAI International Joint Conference on Artificial Intelligence, 2018, vol. 2018-July, doi: 10.24963/ijcai.2018/95.
X. Zhang, T. Wang, J. Qi, H. Lu, G. Wang, Progressive Attention Guided Recurrent Network for Salient Object Detection, in CVPR, 2018, doi: 10.1109/CVPR.2018.00081.
H. Xu, K. Saenko. Ask, attend and answer: Exploring question-guided spatial attention for visual question answering. In European Conference on Computer Vision, pages 451–466. Springer, 2016.
Yang, 2016, Stacked attention networks for image question answering, 21
L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.-S. Chua. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. pages 6298–6306, 2017.
Xu, 2015, Show, attend and tell: Neural image caption generation with visual attention, 2048
V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In Advances in neural information processing systems, pages 2204–2212, 2014.
J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.
Ren, 2021, Salient object detection by fusing local and global contexts, IEEE Trans. Multimed., 23, 1442, 10.1109/TMM.2020.2997178
Li, 2021, Stacked U-shape network with channel-wise attention for salient object detection, IEEE Trans. Multimed., 23, 1397, 10.1109/TMM.2020.2997192
Zhang, 2021, Dense attention fluid network for salient object detection in optical remote sensing images, IEEE Trans. Image Process., 30, 1305, 10.1109/TIP.2020.3042084
Chen, 2021, DPANet: depth potentiality-aware gated attention network for RGB-D salient object detection, IEEE Trans. Image Process., 30, 7012, 10.1109/TIP.2020.3028289
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in IEEE Conf. Comput. Vis. Pattern Recog., 2016.
Liu, 2020, Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton, IEEE Trans. Image Process., 29, 8652, 10.1109/TIP.2020.3017352
B. Wang, Q. Chen, M. Zhou, Z. Zhang, X. Jin, K. Gai, Progressive feature polishing network for salient object detection, arXiv, 2019, doi: 10.1609/aaai.v34i07.6892.
J. Zhao, J.J. Liu, D.P. Fan, Y. Cao, J. Yang, M.M. Cheng, EGNet: Edge guidance network for salient object detection, in Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-October, doi: 10.1109/ICCV.2019.00887.
Z. Wu, L. Su, Q. Huang, Stacked cross refinement network for edge-aware salient object detection, in Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-October, doi: 10.1109/ICCV.2019.00736.
D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in ICLR, 2015.
L. Wang et al., Learning to detect salient objects with image-level supervision, in Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-January, doi: 10.1109/CVPR.2017.404.
C. Yang, L. Zhang, H. Lu, X. Ruan, M.H. Yang, Saliency detection via graph-based manifold ranking, in CVPR, 2013, doi: 10.1109/CVPR.2013.407.
G. Li, Y. Yu, Visual saliency based on multiscale deep features, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, vol. 07-12-June-2015, doi: 10.1109/CVPR.2015.7299184.
Y. Li, X. Hou, C. Koch, J. M. Rehg, A. L. Yuille, The secrets of salient object segmentation, in CVPR, 2014, doi: 10.1109/CVPR.2014.43.
V. Movahedi, J.H. Elder, Design and perceptual validation of performance measures for salient object segmentation, in CVPR, 2010, doi: 10.1109/CVPRW.2010.5543739.
R. Margolin, L. Zelnik-Manor, A. Tal, How to evaluate foreground maps, in CVPR, 2014, doi: 10.1109/CVPR.2014.39.
Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-alignment measure for binary foreground map evaluation. In IJCAI, pages 698–704, 2018.
L. Zhang, J. Dai, H. Lu, Y. He, G. Wang, A Bi-Directional Message Passing Model for Salient Object Detection, in CVPR, 2018, doi: 10.1109/CVPR.2018.00187.
N. Liu, J. Han, M.H. Yang, PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection, in CVPR, 2018, doi: 10.1109/CVPR.2018.00326.
S.-H. Gao, Y.-Q. Tan, M.-M. Cheng, C. Lu, Y. Chen, S. Yan, Highly Efficient Salient Object Detection with 100K Parameters, in Computer Vision – ECCV 2020, 2020, pp. 702–721.
Y. Zhai et al., Bifurcated Backbone Strategy for RGB-D Salient Object Detection, arXiv. 2020.
N. Liu, N. Zhang, J. Han, Learning selective self-mutual attention for RGB-D saliency detection, 2020, doi: 10.1109/CVPR42600.2020.01377.
Yan, 2013, Hierarchical saliency detection