BDNF increases synapse density in dendrites of developing tectal neurons in vivo

Development (Cambridge) - Tập 133 Số 13 - Trang 2477-2486 - 2006
Analiza Lontok Sanchez1, Benjamin J. Matthews1, Margarita M. Meynard1, Bing Hu1, Sana Javed1, Susana Cohen-Cory1
1Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697 USA

Tóm tắt

Neuronal connections are established through a series of developmental events that involve close communication between pre- and postsynaptic neurons. In the visual system, BDNF modulates the development of neuronal connectivity by influencing presynaptic retinal ganglion cell (RGC) axons. Increasing BDNF levels in the optic tectum of Xenopus tadpoles significantly increases both axon arborization and synapse density per axon terminal within a few hours of treatment. Here, we have further explored the mechanisms by which BDNF shapes synaptic connectivity by imaging tectal neurons, the postsynaptic partners of RGCs. Individual neurons were co-labeled with DsRed2 and a GFP-tagged postsynaptic density protein (PSD95-GFP) to visualize dendritic morphology and postsynaptic specializations simultaneously in vivo. Immunoelectron microscopy confirmed that PSD95-GFP predominantly localized to ultrastructurally identified synapses. Time-lapse confocal microscopy of individual, double-labeled neurons revealed a coincident, activity-dependent mechanism of synaptogenesis and axon and dendritic arbor growth, which is differentially modulated by BDNF. Microinjection of BDNF into the optic tectum significantly increased synapse number in tectal neuron dendritic arbors within 24 hours, without significantly influencing arbor morphology. BDNF function-blocking antibodies had opposite effects. The BDNF-elicited increase in synapse number complements the previously observed increase in presynaptic sites on RGC axons. These results, together with the timescale of the response by tectal neurons, suggest that the effects of BDNF on dendritic synaptic connectivity are secondary to its effects on presynaptic RGCs. Thus, BDNF influences synaptic connectivity in multiple ways: it enhances axon arbor complexity expanding the synaptic territory of the axon, while simultaneously coordinating synapse formation and stabilization with individual postsynaptic cells.

Từ khóa


Tài liệu tham khảo

Alsina, B., Vu, T. and Cohen-Cory, S. (2001). Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci.4,1093-1101.

Baquet, Z. C., Gorski, J. A. and Jones, K. R.(2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci.24,4250-4258.

Chen, Y. and Ghosh, A. (2005). Regulation of dendritic development by neuronal activity. J. Neurobiol.64,4-10.

Cline, H. T. (1998). Topographic maps:developing roles of synaptic plasticity. Curr. Biol.8,R836-R839.

Cline, H. T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol.11,118-126.

Cohen-Cory, S. (2002). The developing synapse:construction and modulation of synaptic structures and circuits. Science298,770-776.

Cohen-Cory, S. and Fraser, S. E. (1994). BDNF in the development of the visual system of Xenopus. Neuron12,747-761.

Cohen-Cory, S. and Fraser, S. E. (1995). Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature378,192-196.

Cohen-Cory, S., Escandon, E. and Fraser, S. E.(1996). The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development. Dev. Biol.179,102-115.

Dailey, M. E. and Smith, S. J. (1996). The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci.16,2983-2994.

Deng, J. and Dunaevsky, A. (2005). Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons. Dev. Biol.277,366-377.

Du, J. L. and Poo, M. M. (2004). Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature429,878-883.

Ebihara, T., Kawabata, I., Usui, S., Sobue, K. and Okabe, S.(2003). Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J. Neurosci.23,2170-2181.

Elmariah, S. B., Crumling, M. A., Parsons, T. D. and Balice-Gordon, R. J. (2004). Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J. Neurosci.24,2380-2393.

Ethell, I. M. and Pasquale, E. B. (2005). Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol.75,161-205.

Friedman, H. V., Bresler, T., Garner, C. C. and Ziv, N. E.(2000). Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron27,57-69.

Gonzalez, M., Ruggiero, F. P., Chang, Q., Shi, Y. J., Rich, M. M., Kraner, S. and Balice-Gordon, R. J. (1999). Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron24,567-583.

Horch, H. W. and Katz, L. C. (2002). BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci.5,1177-1184.

Hu, B., Nikolakopoulou, A. M. and Cohen-Cory, S.(2005). BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development132,4285-4298.

Ji, Y., Pang, P. T., Feng, L. and Lu, B.(2005). Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci.8,164-172.

Jontes, J. D. and Smith, S. J. (2000). Filopodia, spines, and the generation of synaptic diversity. Neuron27,11-14.

Kafitz, K. W., Rose, C. R., Thoenen, H. and Konnerth, A.(1999). Neurotrophin-evoked rapid excitation through TrkB receptors. Nature401,918-921.

Konur, S. and Yuste, R. (2004). Imaging the motility of dendritic protrusions and axon terminals: roles in axon sampling and synaptic competition. Mol. Cell Neurosci.27,427-440.

Kovalchuk, Y., Hanse, E., Kafitz, K. W. and Konnerth, A.(2002). Postsynaptic induction of BDNF-mediated long-term potentiation. Science295,1729-1734.

Lom, B. and Cohen-Cory, S. (1999). Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci.19,9928-9938.

Lom, B., Cogen, J., Sanchez, A. L., Vu, T. and Cohen-Cory,S. (2002). Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J. Neurosci.22,7639-7649.

Luikart, B. W., Nef, S., Virmani, T., Lush, M. E., Liu, Y.,Kavalali, E. T. and Parada, L. F. (2005). TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. J. Neurosci.25,3774-3786.

Marrs, G. S., Green, S. H. and Dailey, M. E.(2001). Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci.4,1006-1013.

McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex10,963-973.

McAllister, A. K., Lo, D. C. and Katz, L. C.(1995). Neurotrophins regulate dendritic growth in developing visual cortex. Neuron15,791-803.

McAllister, A. K., Katz, L. C. and Lo, D. C.(1997). Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron18,767-778.

Niell, C. M., Meyer, M. P. and Smith, S. J.(2004). In vivo imaging of synapse formation on a growing dendritic arbor. Nat. Neurosci.7, 254-260.

Nieuwkoop, P. D. and Faber, J. (1956). Normal Table of Xenopus laevis. The Netherlands:Elsevier North Holland.

O'Rourke, N. A. and Fraser, S. E. (1990). Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. Neuron5,159-171.

Okabe, S., Miwa, A. and Okado, H. (2001). Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci.21,6105-6114.

Rajan, I. and Cline, H. T. (1998). Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci.18,7836-7846.

Rajan, I., Witte, S. and Cline, H. T. (1999). NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol.38,357-368.

Rico, B., Xu, B. and Reichardt, L. F. (2002). TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat. Neurosci.5, 225-233.

Singh, K. K. and Miller, F. D. (2005). Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron45,837-845.

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes,J. R., Welker, E. and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420,788-794.

Umeda, T., Ebihara, T. and Okabe, S. (2005). Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3-CA1 synapses in hippocampal slice cultures. Mol. Cell Neurosci.28,264-274.

Vicario-Abejon, C., Owens, D., McKay, R. and Segal, M.(2002). Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci.3, 965-974.

von Bartheld, C. S., Wang, X. and Butowt, R.(2001). Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol. Neurobiol.24,1-28.

Waites, C. L., Craig, A. M. and Garner, C. C.(2005). Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci.28,251-274.

Wirth, M. J., Brun, A., Grabert, J., Patz, S. and Wahle, P.(2003). Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development130,5827-5838.

Witte, S., Stier, H. and Cline, H. T. (1996). In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. J. Neurobiol.31,219-234.

Wu, G. Y. and Cline, H. T. (1998). Stabilization of dendritic arbor structure in vivo by CaMKII. Science279,222-226.

Zhang, X. and Poo, M. M. (2002). Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron36,675-688.

Zweifel, L. S., Kuruvilla, R. and Ginty, D. D.(2005). Functions and mechanisms of retrograde neurotrophin signalling. Nat. Rev. Neurosci.6, 615-625.