BCI based on pedal end-effector triggered through pedaling imagery to promote excitability over the feet motor area
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, Ephraim Joseph GJ, Kuah CWK, Chua KSG. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:1–9.
Barachant A, Bonnet S, Congedo M, Jutten C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng. 2012;59:920–8.
Bastos-Filho TF. Introduction to non-invasive EEG-based brain-computer interfaces for assistive technologies. [S.I]. CRC Press; 2020.
Belda-Lois JM, et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66.
Blum S, Jacobsen NSJ, Bleichner MG, Debener S. A Riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front Hum Neurosci. 2019; https://doi.org/10.3389/fnhum.2019.00141.
Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study Wearable robotics in clinical testing. J NeuroEng Rehabil. 2015;12:1–14.
Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:910–7.
Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol. 2016;12:513–25.
Daly JJ, Ruff RL. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Sci World J. 2007;7:2031–45.
De Vries S, Mulder T. Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med. 2007;39(1):5–13.
Delisle-Rodriguez D, Cardoso V, Gurve D, Loterio F, Alejandra Romero-Laiseca M, Krishnan S, Bastos-Filho T. System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation. J Neural Eng. 2019; https://doi.org/10.1088/1741-2552/ab08c8.
Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65.
Ferrante S, Ambrosini E, Ravelli P, Guanziroli E, Molteni F, Ferrigno G, Pedrocchi A. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients. J NeuroEng Rehabil. 2011;8:47.
Graimann B, Huggins J, Levine S, Pfurtscheller G. Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol. 2002;113:43–7.
Gurve D, Delisle-Rodriguez D, Romero-Laiseca MA, Cardoso V, Loterio F, Bastos Filho T, Krishnan S. Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition. J Neural Eng. 2020;17(2); 026029.
Hashimoto Y, Ushiba J. EEG-based classification of imaginary left and right foot movements using beta rebound. Clin Neurophysiol. 2013;124:2153–60.
Jain S, Krishnaj G, Schindler-Ivens S, Schmit BD. EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol. 2013;124:379–90.
Johnson W, et al. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634. 2016
Katz-Leurer M, Sender I, Keren O, Dvir Z. The influence of early cycling training on balance in stroke patients at the subacute stage. Results Prelim Trial. 2006;20:398–405.
Kautz SA, Duncan PW, Perera S, Neptune RR, Studenski SA. Coordination of hemiparetic locomotion after stroke rehabilitation. Neurorehabil Neural Repair. 2005; https://doi.org/10.1177/1545968305279279.
Li M, et al. A review: Motor rehabilitation after stroke with control based on human intent. Proc Inst Mech Eng H J Eng Med. 2018;4:344–60.
Lotte F, et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update. J Neural Eng. 2018;15(3);031005.
Mason SG, et al. A comprehensive survey of brain interface technology designs. Ann Biomed Eng. 2007;35(2):137–69.
Mcfarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12(3):177–86.
Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590:1669–82.
Mullen TR, et al. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans Biomed Eng. 2015;62(11):2553–67.
Müller-Putz GR, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007;1137:84–91.
Pfurtscheller G, Lopes FH. Event-related EEG / MEG synchronization and desynchronization : basic principles. Clin Neurophysiol. 1999;110:1842–57.
Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114:1226–36.
Rimbert S, et al. Can a subjective questionnaire be used as brain-computer interface performance predictor? Front Hum Neurosci. 2019;12:529.
Rodríguez-Ugarte M, Iáñez E, Ortíz M, Azorín JM. Personalized offline and pseudo-online BCI models to detect pedaling intent. Front Neuroinform. 2017;11(1–12):201.
Rodriguez-Ugarte M d l S, Iáñez E, Ortiz-Garcia M, Azorín JM. Effects of tDCS on real-time BCI detection of pedaling motor imagery. Sensors (Switzerland). 2018;18:1–14.
Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:1–9.
Sharma N, et al. Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke, Cambridge. 2009;40(4):1315–24.
Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc. 2012;87(3):268–79.
Storzer L, Butz M, Hirschmann J, Abbasi O, Gratkowski M, Saupe D, Schnitzler A, Dalal SS. Bicycling and walking are associated with different cortical oscillatory dynamics. Front Hum Neurosci. 2016;10:1–12.
Takeuchi N, Izumi S.-I. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res. Treat. 2013;2013:1–13.
Villa-Parra AC, Delisle-Rodriguez D, Lima JS, Frizera-Neto A, Bastos T. Knee impedance modulation to control an active orthosis using insole sensors. Sensors (Switzerland). 2017; https://doi.org/10.3390/s17122751.
Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63:1203–11.
Wang W, et al. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin. 2010;21(1):157–78.
Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004;61(12):1844–8.
World Health Organization (WHO). WHO’s Global Health Estimates. 2019. Disponível em: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Access in July 2020.