B1-based SAR reconstruction using contrast source inversion–electric properties tomography (CSI-EPT)

Medical & Biological Engineering & Computing - Tập 55 - Trang 225-233 - 2016
Edmond Balidemaj1, Cornelis A. T. van den Berg2, Astrid L. H. M. W. van Lier2, Aart J. Nederveen3, Lukas J. A. Stalpers1, Hans Crezee1, Rob F. Remis4
1Radiotherapy Department, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
2Radiotherapy Department, University Medical Center, Utrecht University, Utrecht, The Netherlands
3Radiology Department, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
4Circuits and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands

Tóm tắt

Specific absorption rate (SAR) assessment is essential for safety purposes during MR acquisition. Online SAR assessment is not trivial and requires, in addition, knowledge of the electric tissue properties and the electric fields in the human anatomy. In this study, the potential of the recently developed CSI-EPT method to reconstruct SAR distributions is investigated. This method is based on integral representations for the electromagnetic field and attempts to reconstruct the tissue parameters and the electric field strength based on $$B_{1}^{ + }$$ field data only. Full three-dimensional FDTD simulations using a female pelvis model are used to validate two-dimensional CSI reconstruction results in the central transverse plane of a 3T body coil. Numerical experiments demonstrate that the reconstructed SAR distributions are in good agreement with the SAR distributions as determined via 3D FDTD simulations and show that these distributions can be computed very efficiently in the central transverse plane of a body coil with the two-dimensional approach of CSI-EPT.

Tài liệu tham khảo

Balidemaj E, Van Lier ALHMW, Crezee H, Nederveen AJ, Stalpers LJA, Van Den Berg CAT (2014) Feasibility of electric property tomography of pelvic tumors at 3T. Magn Reson Med 73:1505–1513 Balidemaj E, van den Berg CAT, Trinks J, van Lier A, Nederveen AN, Stalpers LJA, Crezee H, Remis RF (2015) CSI-EPT: a contrast source inversion approach for improved MRI-based electric properties tomography. IEEE Trans Med Imaging 34(9):1788–1796 Caorsi S, Frattoni A, Gragnani GL, Nortino E, Pastorino M (1991) Numerical algorithm for dielectric-permittivity microwave imaging of inhomogeneous biological bodies. Med Biol Eng Comput 29(6):NS37–NS44 Carluccio G, Erricolo D, Oh S, Collins CM (2013) An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction. IEEE Trans Biomed Eng 60(6):1735–1741 Chen J, Feng Z, Jin JM (1998) Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head. IEEE Trans Biomed Eng 45(5):650–659 Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J, Kiefer B, Schmitt P, Hollenbach H-P, Shen J, Oberle M, Szczerba D, Kam A, Guag JW, Kuster N (2010) The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23–N38 Collins CM, Yang B, Yang QX, Smith MB (2002) Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head. Magn Reson Imaging 20(5):413–424 Collins CM, Liu W, Wang J, Gruetter R, Vaughan JT, Ugurbil K, Smith MB (2004) Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. J Magn Reson Imaging 19(5):650–656 D’Ambrosio V, Dughiero F (2007) Numerical model for RF capacitive regional deep hyperthermia in pelvic tumors. Med Biol Eng Comput 45(5):459–466 de Greef M, Kok HP, Correia D, Borsboom P-P, Bel A, Crezee J (2011) Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol 56(11):3233–3250 Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269 Gamba HR, Delpy DT (1998) Measurement of electrical current density distribution within the tissues of the head by magnetic resonance imaging. Med Biol Eng Comput 36(2):165–170 Haacke EM, Petropoulos LS, Nilges EW, Wu DH (1991) Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol 36(6):713–734 Hasgall P, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin M, Payne D, Klingenböck A, Kuster N (2015) IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 2.6, January 13th, 2015. www.itis.ethz.ch/database Huang L, Schweser F, Herrmann KH, Krämer M, Deistung A, Reichenbach JR (2014) A Monte Carlo method for overcoming the edge artifacts in MRI-based electrical conductivity mapping. In: Proceedings of 22th Annual Meeting ISMRM, p 3190 Kato H, Ishida T (1993) Present and future status of noninvasive selective deep heating using RF in hyperthermia. Med Biol Eng Comput 31(1):S2–S11 Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dössel O (2009) Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 28(9):1365–1374 Katscher U, Findeklee C, Voigt T (2012) B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation. Magn Reson Med 68(6):1911–1918 Liu J, Zhang X, Van de Moortele P-F, Schmitter S, He B (2013) Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach. Phys Med Biol 58(13):4395–4408 Liu J, Zhang X, Schmitter S, Van de Moortele P-F, He B (2015) Gradient-based electrical properties tomography (gEPT): a robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging. Magn Reson Med 74(3):634–646 Makris N, Angelone L, Tulloch S, Sorg S, Kaiser J, Kennedy D, Bonmassar G (2008) MRI-based anatomical model of the human head for specific absorption rate mapping. Med Biol Eng Comput 46(12):1239–1251 Marques JP, Sodickson DK, Ipek O, Collins CM, Gruetter R (2015) Single acquisition electrical property mapping based on relative coil sensitivities: a proof-of-concept demonstration. Magn Reson Med 74(1):185–195 Peyman A, Gabriel C, Grant EH, Vermeeren G, Martens L (2009) Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie-talkie devices. Phys Med Biol 54(2):227–241 Sodickson DK, Alon L, Deniz CM, Ben-Eliezer N, Cloos M, Sodickson LA, Collins CM, Wiggins GC, Novikov DS (2013) Generalized local maxwell tomography for mapping of electrical property gradients and tensors. In: Proceedings of 21th Annual Meeting ISMRM, Salt Lake City, USA, p 4175 Van De Kamer JB, Van Wieringen N, De Leeuw AAC, Lagendijk JJW (2001) The significance of accurate dielectric tissue data for hyperthermia. Int J Hyperth 17(2):123–142 van den Berg PM (1999) Reconstruction of media posed as an optimization problem. In: Wirgin A (ed) Wavefield inversion. Springer, New York, pp 191–240 van den Berg PM, Abubakar A (2001) Contrast source inversion method: state of art. Prog Electromagn Res 34:189–218 van den Berg PM, Kleinman RE (1997) A contrast source inversion method. Inverse Probl 13:1607–1620 van den Berg CAT, Bartels LW, van den Bergen B, Kroeze H, de Leeuw AAC, van de Kamer JB, Lagendijk JJW (2006) The use of MR B 1 imaging for validation of FDTD electromagnetic simulations of human anatomies. Phys Med Biol 51:4735–4746 van den Bergen B, Van den Berg CAT, Bartels LW, Lagendijk JJW (2007) 7T body MRI: B1 shimming with simultaneous SAR reduction. Phys Med Biol 52(17):5429–5441 van den Bergen B, Stolk CC, Van Den Berg JB, Lagendijk JJW, Van den Berg CAT (2009) Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI. Phys Med Biol 54(5):1253–1264 van Lier ALHMW, Brunner DO, Pruessmann KP, Klomp DWJ, Luijten PR, Lagendijk JJW, van den Berg CAT (2012) B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 67(2):552–561 Van Lier ALHMW, Raaijmakers A, Voigt T, Lagendijk JJW, Luijten PR, Katscher U, Van Den Berg CAT (2014) Electrical properties tomography in the human brain at 1.5, 3, and 7T: A comparison study. Magn Reson Med 71(1):354–363 Voigt T, Katscher U, Doessel O (2011) Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med 66(2):456–466 Voigt T, Homann H, Katscher U, Doessel O (2012) Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 68(4):1117–1126 Wen H (2003) Invasive quantitative mapping of conductivity and dielectric distributions using the RF wave propagation effects in high field MRI. Med Imaging 2003 5030:471–477 Zhang X, Schmitter S, Van de Moortele P-F, Liu J, He B (2013) From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7T. IEEE Trans Med Imaging 32(6):1058–1067 Zhang X, Van de Moortele P-F, Schmitter S, He B (2013) Complex B1 mapping and electrical properties imaging of the human brain using a 16-channel transceiver coil at 7T. Magn Reson Med 69(5):1285–1296