B-Raf autoinhibition in the presence and absence of 14-3-3

Structure - Tập 29 - Trang 768-777.e2 - 2021
Mingzhen Zhang1, Hyunbum Jang1, Zhigang Li2, David B. Sacks2, Ruth Nussinov1,3
1Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
2Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
3Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Tài liệu tham khảo

Abraham, 2000, Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation, J. Biol. Chem., 275, 22300, 10.1074/jbc.M003259200 Agianian, 2018, Current insights of BRAF inhibitors in cancer, J. Med. Chem., 61, 5775, 10.1021/acs.jmedchem.7b01306 Brooks, 2009, CHARMM: the biomolecular simulation program, J. Comput. Chem., 30, 1545, 10.1002/jcc.21287 Bum-Erdene, 2020, Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases, Proc. Natl. Acad. Sci. U S A, 117, 7131, 10.1073/pnas.1913654117 Chong, 2003, Regulation of Raf through phosphorylation and N terminus-C terminus interaction, J. Biol. Chem., 278, 36269, 10.1074/jbc.M212803200 Clark, 1997, 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain, J. Biol. Chem., 272, 20990, 10.1074/jbc.272.34.20990 Cotto-Rios, 2020, Inhibitors of BRAF dimers using an allosteric site, Nat. Commun., 11, 4370, 10.1038/s41467-020-18123-2 Cutler, 1998, Autoregulation of the Raf-1 serine/threonine kinase, Proc. Natl. Acad. Sci. U S A, 95, 9214, 10.1073/pnas.95.16.9214 Daub, 1998, The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation, Mol. Cell. Biol., 18, 6698, 10.1128/MCB.18.11.6698 Davies, 2002, Mutations of the BRAF gene in human cancer, Nature, 417, 949, 10.1038/nature00766 DeLano, 2002 Dhillon, 2002, Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259, Mol. Cell. Biol., 22, 3237, 10.1128/MCB.22.10.3237-3246.2002 Durrant, 2018, Targeting the Raf kinases in human cancer: the Raf dimer dilemma, Br. J. Cancer, 118, 3, 10.1038/bjc.2017.399 Fetics, 2015, Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD, Structure, 23, 505, 10.1016/j.str.2014.12.017 Flaherty, 2010, Inhibition of mutated, activated BRAF in metastatic melanoma, N. Engl. J. Med., 363, 809, 10.1056/NEJMoa1002011 Fu, 1994, Interaction of the protein kinase Raf-1 with 14-3-3 proteins, Science, 266, 126, 10.1126/science.7939632 Garcia-Gomez, 2018, Protein-protein interactions: emerging oncotargets in the RAS-ERK pathway, Trends Cancer, 4, 616, 10.1016/j.trecan.2018.07.002 Gardino, 2006, Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms, Semin. Cancer Biol., 16, 173, 10.1016/j.semcancer.2006.03.007 Ghosh, 1994, The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras, J. Biol. Chem., 269, 10000, 10.1016/S0021-9258(17)36981-8 Haling, 2014, Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling, Cancer Cell, 26, 402, 10.1016/j.ccr.2014.07.007 Hatzivassiliou, 2013, Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers, Nature, 501, 232, 10.1038/nature12441 Holderfield, 2014, Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond, Nat. Rev. Cancer, 14, 455, 10.1038/nrc3760 Hu, 2013, Allosteric activation of functionally asymmetric RAF kinase dimers, Cell, 154, 1036, 10.1016/j.cell.2013.07.046 Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 27 Improta-Brears, 1999, Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine, Mol. Cell. Biochem., 198, 171, 10.1023/A:1006981411691 Karoulia, 2017, New perspectives for targeting RAF kinase in human cancer, Nat. Rev. Cancer, 17, 676, 10.1038/nrc.2017.79 Kohler, 2016, B-Raf activation loop phosphorylation revisited, Cell Cycle, 15, 1171, 10.1080/15384101.2016.1159111 Kondo, 2019, Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases, Science, 366, 109, 10.1126/science.aay0543 Lavoie, 2015, Regulation of RAF protein kinases in ERK signalling, Nat. Rev. Mol. Cell. Biol., 16, 281, 10.1038/nrm3979 Lavoie, 2013, Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization, Nat. Chem. Biol., 9, 428, 10.1038/nchembio.1257 Li, 2018, Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling, Structure, 26, 513, 10.1016/j.str.2018.01.011 Liau, 2020, Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization, Nat. Struct. Mol. Biol., 27, 134, 10.1038/s41594-019-0365-0 Lu, 2016, Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view, Chem. Soc. Rev., 45, 4929, 10.1039/C5CS00911A Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542 Michaud, 1995, 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner, Mol. Cell. Biol., 15, 3390, 10.1128/MCB.15.6.3390 Molzan, 2010, Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling, Mol. Cell. Biol., 30, 4698, 10.1128/MCB.01636-09 Morrison, 1993, Identification of the major phosphorylation sites of the Raf-1 kinase, J. Biol. Chem., 268, 17309, 10.1016/S0021-9258(19)85336-X Mott, 1996, The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site, Proc. Natl. Acad. Sci. U S A, 93, 8312, 10.1073/pnas.93.16.8312 Nussinov, 2015, Oligomerization and nanocluster organization render specificity, Biol. Rev. Camb. Philos. Soc., 90, 587, 10.1111/brv.12124 Nussinov, 2017, Intrinsic protein disorder in oncogenic KRAS signaling, Cell. Mol. Life Sci., 74, 3245, 10.1007/s00018-017-2564-3 Nussinov, 2019, Does ras activate raf and PI3K allosterically?, Front. Oncol., 9, 1231, 10.3389/fonc.2019.01231 Nussinov, 2019, Is nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?, Semin. Cancer Biol., 54, 114, 10.1016/j.semcancer.2018.01.002 Nussinov, 2020, Autoinhibition can identify rare driver mutations and advise pharmacology, FASEB J., 34, 16, 10.1096/fj.201901341R Nussinov, 2018, Autoinhibition in Ras effectors Raf, PI3Kalpha, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention, Biophys. Rev., 10, 1263, 10.1007/s12551-018-0461-0 Ostrem, 2013, K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions, Nature, 503, 548, 10.1038/nature12796 Pantsar, 2020, The current understanding of KRAS protein structure and dynamics, Comput. Struct. Biotechnol. J., 18, 189, 10.1016/j.csbj.2019.12.004 Park, 2019, Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes, Nature, 575, 545, 10.1038/s41586-019-1660-y Phillips, 2005, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781, 10.1002/jcc.20289 Rajakulendran, 2009, A dimerization-dependent mechanism drives RAF catalytic activation, Nature, 461, 542, 10.1038/nature08314 Romano, 2014, Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling, Nat. Cell Biol., 16, 673, 10.1038/ncb2986 Roskoski, 2018, Targeting oncogenic Raf protein-serine/threonine kinases in human cancers, Pharmacol. Res., 135, 239, 10.1016/j.phrs.2018.08.013 Rushworth, 2006, Regulation and role of Raf-1/B-Raf heterodimerization, Mol. Cell. Biol., 26, 2262, 10.1128/MCB.26.6.2262-2272.2006 Shan, 2014, Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase, Nat. Struct. Mol. Biol., 21, 579, 10.1038/nsmb.2849 Shaw, 2014, Kinases and pseudokinases: lessons from RAF, Mol. Cell. Biol., 34, 1538, 10.1128/MCB.00057-14 Shen, 2013, Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation, Mol. Cell, 52, 161, 10.1016/j.molcel.2013.08.044 Stanton, 1987, Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences, Mol. Cell. Biol., 7, 1171 Terrell, 2019, Ras-mediated activation of the raf family kinases, Cold Spring Harb. Perspect. Med., 9, a033746, 10.1101/cshperspect.a033746 Thevakumaran, 2015, Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation, Nat. Struct. Mol. Biol., 22, 37, 10.1038/nsmb.2924 Thorson, 1998, 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity, Mol. Cell. Biol., 18, 5229, 10.1128/MCB.18.9.5229 Tran, 2005, B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms, J. Biol. Chem., 280, 16244, 10.1074/jbc.M501185200 Travers, 2018, Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain, Sci. Rep., 8, 8461, 10.1038/s41598-018-26832-4 Tsai, 2018, Allosteric activation of RAF in the MAPK signaling pathway, Curr. Opin. Struct. Biol., 53, 100, 10.1016/j.sbi.2018.07.007 Wan, 2004, Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF, Cell, 116, 855, 10.1016/S0092-8674(04)00215-6 Weber, 2001, Active Ras induces heterodimerization of cRaf and BRaf, Cancer Res., 61, 3595 Yaeger, 2019, Targeting alterations in the RAF-MEK pathway, Cancer Discov., 9, 329, 10.1158/2159-8290.CD-18-1321 Zhang, 2000, Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601, EMBO J., 19, 5429, 10.1093/emboj/19.20.5429 Zimmermann, 1999, Phosphorylation and regulation of Raf by Akt (protein kinase B), Science, 286, 1741, 10.1126/science.286.5445.1741