Bézier curves and C2 interpolation in Riemannian manifolds

Journal of Approximation Theory - Tập 148 - Trang 111-127 - 2007
Tomasz Popiel1, Lyle Noakes1
1School of Mathematics and Statistics (M019), The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia

Tài liệu tham khảo

J. Ahlberg, E. Nilson, J. Walsh, The Theory of Splines and Their Applications, Mathematics in Science and Engineering, No. 38. Academic Press, New York, 1967. Belta, 2002, On the computation of rigid body motion, Electron. J. Comput. Kinematics, 1 Belta, 2002, Euclidean metrics for motion generation on SE(3), J. Mech. Eng. Sci. Part C, 216, 47, 10.1243/0954406021524909 Bézier, 1986 M. Camarinha, The geometry of cubic polynomials on Riemannian manifolds, Ph.D. Thesis, University of Coimbra, 1996. Camarinha, 1995, Splines of class Ck on non-Euclidean spaces, IMA J. Math. Control Inform., 12, 399, 10.1093/imamci/12.4.399 Camarinha, 2001, On the geometry of Riemannian cubic polynomials, Differential Geom. Appl., 15, 107, 10.1016/S0926-2245(01)00054-7 Crouch, 1999, The de Casteljau algorithm on Lie groups and spheres, J. Dyn. Control Syst., 5, 397, 10.1023/A:1021770717822 Crouch, 1995, The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst., 1, 177, 10.1007/BF02254638 P. de Casteljau, Outillages méthodes de calcul’, Technical Report, André Citroën Automobiles, Paris, 1959. do Carmo, 1992 Duff, 1986, Splines in animation and modelling Farin, 1999 Farin, 2001 Gabriel, 1985, Spline interpolation in curved space, 1 Ge, 1994, Geometric construction of Bézier motions, Trans. ASME J. Mech. Des., 116, 749, 10.1115/1.2919446 Ge, 1994, Computer aided geometric design of motion interpolants, Trans. ASME J. Mech. Des., 116, 756, 10.1115/1.2919447 Giambo, 2002, An analytical theory for Riemannian cubic polynomials, IMA J. Math. Control Inform., 19, 445, 10.1093/imamci/19.4.445 Giambo, 2004, Optimal control on Riemannian manifolds by interpolation, Math. Control Signals and Syst., 16, 278, 10.1007/s00498-003-0139-3 Hofer, 2004, Energy-minimizing splines in manifolds, ACM Trans. Graphics, 23, 284, 10.1145/1015706.1015716 Jüttler, 1996, Computer-aided design with spatial rational B-spline motions, Trans. ASME J. Mech. Des., 118, 193, 10.1115/1.2826869 Kim, 1995, A general construction scheme for unit quaternion curves with simple high order derivatives, 369 Kim, 1995, Interpolating solid orientations with circular blending quaternion curves, Comput. Aided Des., 27, 385, 10.1016/0010-4485(95)96802-S Kim, 1996, Hermite interpolation of solid orientations with circular blending quaternion curves, J. Visualization Comput. Animation, 7, 95, 10.1002/(SICI)1099-1778(199604)7:2<95::AID-VIS138>3.0.CO;2-8 K. Krakowski, Geometrical Methods of Inference, Ph.D. Thesis, University of Western Australia, 2002. Krakowski, 2005, Envelopes of splines in the projective plane, IMA J. Math. Control Inform., 22, 171, 10.1093/imamci/dni014 Lane, 1980, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. Mach. Intell., 2, 35, 10.1109/TPAMI.1980.4766968 J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, 1963. Nielson, 1993, Smooth interpolation of orientation, 75 Nielson, 1992, Animated rotations using quaternions and splines on a 4D sphere, Programming Comput. Software, 18, 145 Noakes, 1997, Riemannian quadratics, 319 Noakes, 1998, Nonlinear corner-cutting, Adv. Comput. Math., 8, 165, 10.1023/A:1018940112654 Noakes, 1999, Accelerations of Riemannian quadratics, Proc. Amer. Math. Soc., 127, 1827, 10.1090/S0002-9939-99-04809-1 Noakes, 2003, Null cubics and Lie quadratics, J. Math. Phys., 44, 1436, 10.1063/1.1537461 Noakes, 2004, Non-null Lie quadratics in E3, J. Math. Phys., 45, 4334, 10.1063/1.1803609 Noakes, 2006, Duality and Riemannian cubics, Adv. Comput. Math., 25, 195, 10.1007/s10444-004-7621-4 Noakes, 2006, Lax constraints in semisimple Lie groups, Quart. J. Math., 57, 527, 10.1093/qmath/hal002 Noakes, 1989, Cubic splines on curved spaces, IMA J. Math. Control Inform., 6, 465, 10.1093/imamci/6.4.465 Noakes, 2005, Null Riemannian cubics in tension in SO(3), IMA J. Math. Control Inform., 22, 477, 10.1093/imamci/dni040 Noakes, 2006, Quadratures and cubics in SO(3) and SO(1,2), IMA J. Math. Control Inform, 23, 463, 10.1093/imamci/dni069 Park, 1995, Bézier curves on Riemannian manifolds and Lie groups with kinematic applications, Trans. ASME J. Mech. Des., 117, 36, 10.1115/1.2826114 Park, 1997, Smooth invariant interpolation of rotations, ACM Trans. Graphics, 16, 277, 10.1145/256157.256160 Popiel, 2006, C2 spherical Bézier splines, Comput. Aided Geom. Des., 23, 261, 10.1016/j.cagd.2005.11.003 Pottmann, 2005, A variational approach to spline curves on surfaces, Comput. Aided Geom. Des., 22, 693, 10.1016/j.cagd.2005.06.006 Schlag, 1991, Using geometric constructions to interpolate orientation with quaternions, 377 Shoemake, 1985, Animating rotations with quaternion curves, ACM SIGGRAPH Comput. Graphics, 19, 245, 10.1145/325165.325242 Silva Leite, 2000, Elastic curves as solutions of sub-Riemannian control problems, Math. Control Signals Systems, 13, 140, 10.1007/PL00009863 Wallner, 2006, Smoothness analysis of subdivision schemes by proximity, Constr. Approx., 24, 289, 10.1007/s00365-006-0638-3 Wallner, 2005, Convergence and C1 analysis of subdivision schemes on manifolds by proximity, Comput. Aided Geom. Design, 22, 593, 10.1016/j.cagd.2005.06.003 Žefran, 1998, Interpolation schemes for rigid body motions, Comput. Aided Design, 30, 179, 10.1016/S0010-4485(97)00060-2 Žefran, 1998, On the generation of smooth three-dimensional rigid body motions, IEEE Trans. Robotics & Automat., 14, 576, 10.1109/70.704225