Azadithiolate-bridged [FeFe]-hydrogenase mimics with bridgehead N-derivation: structural and electrochemical investigations

Springer Science and Business Media LLC - Tập 47 - Trang 257-263 - 2022
Ming-Sheng Gui1, Yu Guan1, Yu-Long Li1,2, Pei-Hua Zhao3,2
1College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, People’s Republic of China
2Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, People’s Republic of China
3School of Materials Science and Engineering, North University of China, Taiyuan, People’s Republic of China

Tóm tắt

To further develop the active site mimics of azadithiolate-bridged [FeFe]-hydrogenases, a series of new diiron azadithiolate complexes [{(μ-SCH2)2N(C6H4CH2CH2OC(O)R)}Fe2(CO)6] (R = CH2C6H4Me-p, 2; C6H5, 3; CH3, 4) bearing bridgehead N-derivation were successfully prepared by facile esterification reaction of parent complex [{(μ-SCH2)2N(C6H4CH2CH2OH)}Fe2(CO)6] (1) and different carboxyl compounds RCO2H in the presence of 4-dimethylaminopyridine (DMAP) as catalyst and dicyclohexylcarbodiimide (DCC) as dehydrating reagent. Complexes 2–4 have been fully characterized by means of elemental analysis, FT-IR and NMR (1H, 13C) spectroscopies, and especially for 2 by X-ray crystallography. Further electrochemical and electrocatalytic properties of target complexes 2–4 and reference analogue 1 were studied and compared in the absence and presence of acetic acid (HOAc) as a proton source by cyclic voltammetry (CV), indicating that they may be considered as the active biomimetic electrocatalysts for proton reduction to hydrogen (H2).

Tài liệu tham khảo

Li YL, Rauchfuss TB (2016) Chem Rev 116:7043–7077 Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081–4148 Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP (2021) Chem Soc Rev 50:1688–1784 Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858 Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Structure 17:13–23 Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Nat Chem Biol 9:607–609 Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M (2014) Chem Sci 5:1187–1203 Erdem ÖF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50:1439–1443 Bethel RD, Darensbourg MY (2013) Nature 499:40–41 Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66–69 Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W (2021) Coord Chem Rev 449:214191 Gao S, Fan WH, Liu Y, Jiang DY, Duan Q (2020) Int J Hyrogen Energ 45:4503–4527 Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G (2019) Dalton Trans 48:6174–6190 Xiao ZY, Zhong W, Liu XM (2021) Dalton Trans 51:40–49 Lü S, Huang HL, Zhang RF, Ma CL, Li QL, He J, Yang J, Li T, Li YL (2020) Inorg Chem Front 7:2352–2361 Hu MY, Li JR, Jing XB, Tian H, Zhao PH (2019) Inorg Chim Acta 495:119021 Li JR, Hu MY, Lü S, Gu XL, Jing XB, Zhao PH (2020) Appl Organomet Chem 34:e5929 Hu MY, Zhao PH, Li JR, Gu XL, Jing XB, Liu XF (2020) Appl Organomet Chem 34:e5523 Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF (2019) Organometallics 38:385–394 Gu XL, Li JR, Li QL, Guo Y, Jing XB, Chen ZB, Zhao PH (2021) J Inorg Biochem 219:111449 Salyi S, Kritikos M, Åkermark B, Sun L (2003) Chem Eur J 9:557–560 Thomas CM, Rudiger O, Liu TB, Carson CE, Hall MB, Darensbourg MY (2007) Organometallics 26:3976–3984 Zhao PH, Liu YQ, Zhao GZ (2013) Polyhedron 53:144–149 Song LC, Li CG, Gao J, Yin BS, Luo X, Zhang XG, Bao HL, Hu QM (2008) Inorg Chem 47:4545–4553 Song LC, Liu XF, Ming JB, Ge JH, Xie ZJ, Hu QM (2010) Organometallics 29:610–617 Apfel UP, Kowol CR, Kloss F, Görls H, Keppler BK, Weigand W (2011) J Organomet Chem 696:1084–1088 Zhao PH, Li JR, Ma ZY, Han HF, Qu YP, Lu BP (2021) Inorg Chem Front 8:2107–2118 APEX2, version 2009.7–0 (2007) Bruker AXS, Inc., Madison Sheldrick GM (2001) Bruker AXS Inc., Madison Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341 Sheldrick GM (2008) Acta Cryst 64:112–122 Sheldrick GM (2015) Acta Cryst C71:3–8 Gu XL, Li JR, Jin B, Guo Y, Jing XB, Zhao PH (2021) New J Chem 45:17996–18007 Ghosh S, Rahaman A, Orton G, Gregori G, Bernat M, Kulsume U, Hollingsworth N, Holt KB, Kabir SE, Hogarth G (2019) Eur J Inorg Chem 2019:4506–4515 Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004–12014 Tatematsu R, Inomata T, Ozawa T, Masuda H (2016) Angew Chem Int Ed 55:5247–5250 Li RX, Liu XF, Liu T, Yin YB, Zhou Y, Mei SK, Yan J (2017) Electrochim Acta 237:207–216 Hemming EB, Chan B, Turner P, Corcilius L, Price JR, Gardiner MG, Masters AF, Maschmeyer T (2018) Appl Catal B Environ 223:234–241 Zhao PH, Hu MY, Li JR, Wang YZ, Lu BP, Han HF, Liu XF (2020) Electrochim Acta 353:136615 Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Li YL (2018) Organometallics 37:1280–1287 Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681–2699 Zhao PH, Li JR, Gu XL, Jing XB, Liu XF (2020) J Inorg Biochem 210:111126 Fourmond V, Jacques PA, Fontecave M, Artero V (2010) Inorg Chem 49:10338–10347