Axisymmetric vibration of a soft elastic rod with surface tension-induced residual stress

Acta Mechanica - Tập 233 - Trang 2405-2413 - 2022
Guang Yang1, Luqiao Qi1, Ming Dai1, Pengyu Pei2, Cun-Fa Gao1
1State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2School of Electrical and Mechanical Engineering, Jinling Institute of Technology, Nanjing, China

Tóm tắt

This paper studies the axisymmetric vibration of a soft elastic rod with surface tension based on the modified Gurtin–Murdoch model. In contrast to the original Gurtin–Murdoch model (GM model) in which surface tension is treated as a finite value while the residual stress in the bulk induced by it is however treated as an infinitesimal quantity, the present modified model supposes both to be finite values. In addition to the effects of surface tension-induced residual stress in the bulk, those of the surface inertia and bulk axial prestress are incorporated in the present model, and particularly the dispersion relations are derived analytically for the cases of incompressible rods. Comparative results are given for the present model, the original GM model, and the classical elasticity model without surface tension, which reveal that the surface tension-induced residual stress in the bulk would play a crucial role in predicting the frequency of vibration of the rod when the dimensionless parameter (σ0/μR) ≥ 0.3, where (μ, R, σ0) are the shear modulus, the radius, and surface tension of the rod.

Tài liệu tham khảo

Li, Z., Tan, H.H., Jagadish, C., Fu, L.: III–V semiconductor single nanowire solar cells: a review. Adv. Mater. Technol. 3, 1800005 (2018). https://doi.org/10.1002/admt.201800005 Sannicolo, T., Lagrange, M., Cabos, A., Celle, C., Simonato, J.-P., Bellet, D.: Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581 Wang, W.C., Zhou, B., Xu, S.H., Yang, Z.M., Zhang, Q.Y.: Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 101, 90–171 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.003 Nasr Esfahani, M., Alaca, B.E.: A review on size-dependent mechanical properties of nanowires. Adv. Eng. Mater. 21, 1900192 (2019). https://doi.org/10.1002/adem.201900192 Gurtin, E., Murdoch, M.A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975) Gurtin, M.E., Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2 Peng, X.L., Huang, G.Y.: Elastic vibrations of a cylindrical nanotube with the effect of surface stress and surface inertia. Phys. E Low Dimens. Syst. Nanostruct. 54, 98–102 (2013). https://doi.org/10.1016/j.physe.2013.06.009 Huang, G.Y., Kang, Y.L.: Acoustic vibrations of a circular nanowire by considering the effect of surface. J. Appl. Phys. 110, 10–15 (2011). https://doi.org/10.1063/1.3610498 Chen, W.Q., Wu, B., Zhang, C.L., Zhang, C.: On wave propagation in anisotropic elastic cylinders at nanoscale: surface elasticity and its effect. Acta Mech. 225, 2743–2760 (2014). https://doi.org/10.1007/s00707-014-1211-4 Xu, L.M., Fan, H.: Torsional waves in nanowires with surface elasticity effect. Acta Mech. 227, 1783–1790 (2016). https://doi.org/10.1007/s00707-016-1607-4 Xu, L.M., Fan, H., Zhou, Y.F.: Torsional wave in a circular micro-tube with clogging attached to the inner surface. Acta Mech. Solida Sin. 30, 299–305 (2017). https://doi.org/10.1016/j.camss.2017.06.001 Eremeyev, V.A., Rosi, G., Naili, S.: Transverse surface waves on a cylindrical surface with coating. Int. J. Eng. Sci. 147, 103188 (2020). https://doi.org/10.1016/j.ijengsci.2019.103188 Andreotti, B., Bäumchen, O., Boulogne, F., Daniels, K.E., Dufresne, E.R., Perrin, H., Salez, T., Snoeijer, J.H., Style, R.W.: Solid capillarity: when and how does surface tension deform soft solids? Soft Matter 12, 2993–2996 (2016). https://doi.org/10.1039/C5SM03140K Xu, S., Li, P., Lu, Y.: In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 11, 625–632 (2018). https://doi.org/10.1007/s12274-017-1667-3 Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 1–4 (2007). https://doi.org/10.1063/1.2746950 Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976). https://doi.org/10.1063/1.89173 Yue, Y.M., Ru, C.Q., Xu, K.Y.: Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int. J. Non-Linear. Mech. 88, 67–73 (2017). https://doi.org/10.1016/j.ijnonlinmec.2016.10.013 Rouhi, H., Ansari, R., Darvizeh, M.: Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. Int. J. Mech. Sci. 113, 1–9 (2016). https://doi.org/10.1016/j.ijmecsci.2016.04.004 Wang, J., Gao, Y., Ng, M.Y., Chang, Y.C.: Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids. 85, 287–292 (2015). https://doi.org/10.1016/j.jpcs.2015.06.005 Zhang, L., Ru, C.Q.: Free vibration of biopolymer spherical shells of high structural heterogeneity. AIP Adv. (2018). https://doi.org/10.1063/1.5036672 Song, F., Huang, G.L., Varadan, V.K.: Study of wave propagation in nanowires with surface effects by using a high-order continuum theory. Acta Mech. 209, 129–139 (2010). https://doi.org/10.1007/s00707-009-0156-5 Huang, Z.X.: Torsional wave and vibration subjected to constraint of surface elasticity. Acta Mech. 229, 1171–1182 (2018). https://doi.org/10.1007/s00707-017-2047-5 Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007). https://doi.org/10.1103/PhysRevLett.99.206102 Karabalin, R.B., Villanueva, L.G., Matheny, M.H., Sader, J.E., Roukes, M.L.: Stress-induced variations in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett. 108, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.108.236101 Ru, C.Q.: A strain-consistent elastic plate model with surface elasticity. Contin. Mech. Thermodyn. 28, 263–273 (2016). https://doi.org/10.1007/s00161-015-0422-9 Yang, G., Gao, C.F., Ru, C.Q.: A study on the Gurtin–Murdoch model for spherical solids with surface tension. ZAMP Zeitschrift für Angew. Math. und Phys. 72, 95 (2021). https://doi.org/10.1007/s00033-021-01502-0 Yang, G., Gao, C.F., Ru, C.Q.: Surface tension-driven instability of a soft elastic rod revisited. Int. J. Solids Struct. 241, 111491 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111491 Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010). https://doi.org/10.1007/s11433-010-0144-8 Wang, S., Li, X., Yi, X., Duan, H.: Morphological changes of nanofiber cross-sections due to surface tension. Extrem. Mech. Lett. 44, 101211 (2021). https://doi.org/10.1016/j.eml.2021.101211 Dai, M., Yang, H.B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin–Murdoch model. Mech. Mater. 135, 144–148 (2019). https://doi.org/10.1016/j.mechmat.2019.05.009 Shao, X., Saylor, J.R., Bostwick, J.B.: Extracting the surface tension of soft gels from elastocapillary wave behavior. Soft Matter 14, 7347–7353 (2018). https://doi.org/10.1039/c8sm01027g Mora, S., Phou, T., Fromental, J.M., Pismen, L.M., Pomeau, Y.: Capillarity driven instability of a soft solid. Phys. Rev. Lett. 105, 3–7 (2010). https://doi.org/10.1103/PhysRevLett.105.214301 Lu, P., Lee, H.P., Lu, C., O’Shea, S.J.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B. 72, 085405 (2005). https://doi.org/10.1103/PhysRevB.72.085405 Nemat-Nasser, S.: On local stability of a finitely deformed solid subjected to follower type loads. Q. Appl. Math. 26, 119–129 (1968). https://doi.org/10.1090/qam/99863 Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids. 5, 229–241 (1957). https://doi.org/10.1016/0022-5096(57)90016-9 Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971). https://doi.org/10.1115/1.3408976 Renton, J.D.: An analysis of the static and dynamic instability of thick cylinders. Int. J. Mech. Sci. 21, 747–754 (1979). https://doi.org/10.1016/0020-7403(79)90055-9 Nedin, R., Vatulyan, A.: Inverse problem of non-homogeneous residual stress identification in thin plates. Int. J. Solids Struct. 50, 2107–2114 (2013). https://doi.org/10.1016/j.ijsolstr.2013.03.008 Rubin, D., Krempl, E.: Introduction to Continuum Mechanics. Elsevier, New York (2010) Ciarletta, P., Ben Amar, M.: Peristaltic patterns for swelling and shrinking of soft cylindrical gels. Soft Matter 8, 1760–1763 (2012). https://doi.org/10.1039/c2sm06851f Chippada, U., Yurke, B., Langrana, N.A.: Simultaneous determination of Young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J. Mater. Res. 25, 545–555 (2010). https://doi.org/10.1557/jmr.2010.0067 Khan, M.Y., Samanta, A., Ojha, K., Mandal, A.: Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. Asia-Pacific J. Chem. Eng. 3, 579–585 (2008). https://doi.org/10.1002/apj.212 Taffetani, M., Ciarletta, P.: Beading instability in soft cylindrical gels with capillary energy: Weakly non-linear analysis and numerical simulations. J. Mech. Phys. Solids. 81, 91–120 (2015). https://doi.org/10.1016/j.jmps.2015.05.002 Xuan, C., Biggins, J.: Finite-wavelength surface-tension-driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid. Phys. Rev. E. 94, 023107 (2016). https://doi.org/10.1103/PhysRevE.94.023107 Wang, L.: Axisymmetric instability of soft elastic tubes under axial load and surface tension. Int. J. Solids Struct. 191–192, 341–350 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.015