Axisymmetric self-similar finite-time singularity solution of the Euler equations
Tóm tắt
Self-similar finite-time singularity solutions of the axisymmetric Euler equations in an infinite system with a swirl are provided. Using the Elgindi approximation of the Biot–Savart kernel for the velocity in terms of vorticity, we show that an axisymmetric incompressible and inviscid flow presents a self-similar finite-time singularity of second specie, with a critical exponent ν. Contrary to the recent findings by Hou and collaborators, the current singularity solution occurs at the origin of the coordinate system, not at the system’s boundaries or on an annular rim at a finite distance. Finally, assisted by a numerical calculation, we sketch an approximate solution and find the respective values of ν. These solutions may be a starting point for rigorous mathematical proofs.
Tài liệu tham khảo
Gibbon, J.D.: The three-dimensional Euler equations: where do we stand? Physica D 237, 1894–1904 (2008)
Luo, G., Hou, T.Y.: Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Natl. Acad. Sci. USA 111(36), 12968–12973 (2014). https://doi.org/10.1073/pnas.1405238111
Barkley, D.: A fluid mechanic’s analysis of the teacup singularity. Proc. R. Soc. A, Math. Phys. Eng. Sci. 476(2240), 20200348 (2020). https://doi.org/10.1098/rspa.2020.0348
Elgindi, T.M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations. Ann. PDE 5, 16 (2019)
Chen, J., Hou, T.Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data (2022). arXiv:2210.07191
Pomeau, Y.: Singularité dans l’évolution du fluide parfait. C. R. Math. Acad. Sci. Paris 321, 407–411 (1995)
Pomeau, Y.: On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions. C. R., Méc. 346(3), 184–197 (2018)
Pomeau, Y., Le Berre, M., Lehner, T.: A case of strong non linearity: intermittency in highly turbulent flows. C. R., Méc. 347, 342–356 (2019)
Pomeau, Y., Le Berre, M.: Blowing-up solutions of the axisymmetric Euler equations for an incompressible fluid (2019). arXiv:1901.09426
Le Berre, M., Lehner, T., Pomeau, Y.: Singularities in turbulent flows: how to observe them? Phys. D, Nonlinear Phenom. 443, 133563 (2023). https://doi.org/10.1016/j.physd.2022.133563
Josserand, C., Pomeau, Y., Rica, S.: Finite-time localized singularities as a mechanism for turbulent dissipation. Phys. Rev. Fluids 5, 054607 (2020). https://doi.org/10.1103/PhysRevFluids.5.054607
Amauger, J., Josserand, C., Pomeau, Y., Rica, S.: Two dimensional singularity turbulence. Phys. D, Nonlinear Phenom. 443, 133532 (2023). https://doi.org/10.1016/j.physd.2022.133532
Rica, S.: Potential anisotropic finite-time singularity in the three-dimensional axisymmetric Euler equations. Phys. Rev. Fluids 7, 034401 (2022). https://doi.org/10.1103/PhysRevFluids.7.034401
Elgindi, T.M.: Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \(\mathbb{R}^{3}\). Ann. Math. 194(3), 647–727 (2021)
Eggers, J., Fontelos, M.A.: Singularities: Formation, Structure, and Propagation. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316161692
Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1995)
Grauer, R., Sideris, T.C.: Numerical computation of 3D incompressible ideal fluids with swirl. Phys. Rev. Lett. 67, 3511–3514 (1991). https://doi.org/10.1103/PhysRevLett.67.3511
Pumir, A., Siggia, E.D.: Finite-time singularities in the axisymmetric three-dimension Euler equations. Phys. Rev. Lett. 68, 1511–1514 (1992). https://doi.org/10.1103/PhysRevLett.68.1511
Storn, R., Price, K.: Differential Evolution –A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Rica, S., Ruz, G.A.: Estimating SIR model parameters from data using differential evolution: an application with Covid-19 data. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2020). https://doi.org/10.1109/CIBCB48159.2020.9277708
Ukhovskii, M.R., Iudovich, V.I.: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32(1), 52–62 (1968). https://doi.org/10.1016/0021-8928(68)90147-0