Axiomatization of an allocation rule for ordered tree TU-games
Tài liệu tham khảo
Abreu, 2012, Bargaining and efficiency in networks, J. Econom. Theory, 147, 43, 10.1016/j.jet.2011.11.003
Alonso-Meijide, 2006, The Banzhaf value and communication situations, Nav. Res. Logist., 53, 198, 10.1002/nav.20132
Alonso-Meijide, 2009, Values of games with graph restricted communication and a priori unions, Math. Social Sci., 58, 202, 10.1016/j.mathsocsci.2009.05.004
Ansink, 2012, Sequential sharing rules for river sharing problems, Soc. Choice Welfare, 38, 187, 10.1007/s00355-010-0525-y
Aumann, 2008, Game theory
Banzhaf, 1965, Weighted voting doesn’t work: a mathematical analysis, Rutgers Law Rev., 19, 317
Béal, S., Ferrières, S., Rémila, E., Solal, P., 2017a. Axiomatic and bargaining foundations of an allocation rule for ordered tree TU-games, cRESE working paper No 2017-11. URL http://crese.univ-fcomte.fr/WP-2017-11.pdf.
Béal, 2015, The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations, Theory and Decision, 79, 251, 10.1007/s11238-014-9463-y
Béal, 2017, A strategic implementation of the sequential equal surplus division rule for rooted trees, Ann. Oper. Res., 253, 43, 10.1007/s10479-016-2290-5
Béal, 2017, Discounted tree solutions, Discrete Appl. Math., 219, 1, 10.1016/j.dam.2016.11.013
Borm, 1992, On the position value for communication situations, SIAM J. Discrete Math., 5, 305, 10.1137/0405023
Calvó-Armengol, 2001, Bargaining power in communication networks, Math. Social Sci., 41, 69, 10.1016/S0165-4896(00)00049-4
Demange, 1984, Implementing efficient egalitarian outcomes, Econometrica, 52, 1167, 10.2307/1910993
Demange, 2004, On group stability in hierarchies and networks, J. Polit. Econ., 112, 754, 10.1086/421171
Funaki, 2001, The core and consistency properties: a general characterisation, Int. Game Theory Rev., 3, 175, 10.1142/S0219198901000361
Gulati, 1998, Alliances and networks, Strateg. Manag. J., 19, 293, 10.1002/(SICI)1097-0266(199804)19:4<293::AID-SMJ982>3.0.CO;2-M
Gulati, 1999, Where do interorganizational networks come from?, Am. J. Sociol., 104, 1439, 10.1086/210179
Hamel, 1991, Competition for competence and inter-partner learning within international strategic alliances, Strateg. Manag. J., 12, 83, 10.1002/smj.4250120908
Harrigan, 1985
Harrigan, 1986
Hart, 1989, Potential, value, and consistency, Econometrica, 57, 589, 10.2307/1911054
Herings, 2008, The average tree solution for cycle-free graph games, Games Econom. Behav., 62, 77, 10.1016/j.geb.2007.03.007
Ju, 2007, The consensus value: A new solution concept for cooperative games, Soc. Choice Welfare, 28, 685, 10.1007/s00355-006-0192-1
Khmelnitskaya, 2010, Values for rooted-tree and sink-tree digraph games and sharing a river, Theory and Decision, 69, 657, 10.1007/s11238-009-9141-7
Lehrer, 1988, An axiomatization of the Banzhaf value, Internat. J. Game Theory, 17, 89, 10.1007/BF01254541
Meessen, 1988
Myerson, 1977, Graphs and cooperation in games, Math. Oper. Res., 2, 225, 10.1287/moor.2.3.225
Navarro, 2013, A simple bargaining procedure for the Myerson value, B. E. J. Theor. Econ., 13, 131, 10.1515/bejte-2012-0006
Pérez-Castrillo, 2001, Bidding for the surplus: a non-cooperative approach to the Shapley value, J. Econom. Theory, 100, 274, 10.1006/jeth.2000.2704
Thomson, W., 2015. Consistent allocation rules, unpublished manuscript, Department of Economics, University of Rochester, USA.
van den Brink, 2012, Efficiency and collusion neutrality in cooperative games and networks, Games Econom. Behav., 76, 344, 10.1016/j.geb.2012.04.001
van den Brink, 2013, A strategic implementation of the Average Tree solution for cycle-free graph games, J. Econom. Theory, 148, 2737, 10.1016/j.jet.2013.07.018