Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hành Vi Nén Trục của Panel Sandwich Composite Sử Dụng Bê Tông Từ Tổng Hợp Thô Tái Chế
Tóm tắt
Tổng hợp thô được sản xuất từ chất thải xây dựng và phá dỡ của các công trình xây dựng gọi là tổng hợp thô tái chế hỗn hợp (MRA), chủ yếu bao gồm tổng hợp thô tái chế từ bê tông (CRA) và tổng hợp thô tái chế từ gạch (BRA). Bài báo trình bày kết quả của một nghiên cứu thực nghiệm và số học về panel sandwich composite được làm từ MRA. Panel sandwich composite với MRA (CSPMRA) đã được thử nghiệm dưới điều kiện nén trục để khảo sát ảnh hưởng của tỷ lệ phối trộn bê tông, độ dày của tấm cách nhiệt và khung viền bổ sung lên đường cong tải - biến dạng, đường cong tải - căng thẳng, sự dịch chuyển theo phương thẳng đứng, khả năng chịu tải tối đa và chế độ hỏng của CSPMRA. Kết quả từ phân tích thực nghiệm và phân tích phần tử hữu hạn (FEA) được so sánh với kết quả dựa trên mã Trung Quốc, phương trình thiết kế ACI và các phương trình kinh nghiệm khác được phát triển bởi các nhà nghiên cứu, có thể áp dụng để dự đoán tải trọng tối đa của các panel sandwich. Một phương trình bán kinh nghiệm đã được đề xuất để phù hợp hơn với kết quả thực nghiệm và kết quả FEA.
Từ khóa
#bê tông tái chế #tổng hợp thô tái chế hỗn hợp #panel sandwich composite #phân tích phần tử hữu hạn #khả năng chịu tải tối đa #hành vi nén trụcTài liệu tham khảo
Abbas A, Adil M, Ahmad N, Ahmad I (2019) Behavior of reinforced concrete sandwiched panels (RCSPs) under blast load. Engineering Structures 181:476–490, DOI: https://doi.org/10.1016/j.engstruct.2018.12.051
ACI 318 (2011) Building code requirements for structural concrete and commentary. USA: American Concrete Institute
Al-Rubaye S, Sorensen T, Thomas RJ, Maguire M (2019) Generalized beam-spring model for predicting elastic behavior of partially composite concrete sandwich wall panels. Engineering Structures 198:109533, DOI: https://doi.org/10.1016/j.engstruct.2019.109533
Amran YHM, Ali AAA, Rashid RSM, Hejazi F, Safiee NA (2016a) Structural behavior of axially loaded precast foamed concrete sandwich panels. Construction & Building Materials 107:307–320, DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.020
Amran YHM, Rashid RSM, Hejazi F, Ali AAA, Safiee NA, Bida SM (2018) Structural performance of precast foamed concrete sandwich panel subjected to axial load. KSCE Journal of Civil Engineering 22(4):1179–1192, DOI: https://doi.org/10.1007/s12205-017-1711-6
Amran YHM, Rashid RSM, Hejazi F, Safiee NA, Ali AAA (2016b) Response of precast foamed concrete sandwich panels to flexural loading. Journal of Building Engineering 7:143–158, DOI: https://doi.org/10.1016/j.jobe.2016.06.006
Bagaric M, Pecur IB, Milovanovic B (2020) Hygrothermal performance of ventilated prefabricated sandwich wall panel from recycled construction and demolition waste-A case study. Energy and Buildings 206:109573, DOI: https://doi.org/10.1016/j.enbuild.2019.109573
Benayoune A, Samad AAA, Ali AAA, Trikha DN (2007) Response of pre-cast reinforced composite sandwich panels to axial loading. Construction & Building Materials 21(3):677–685, DOI: https://doi.org/10.1016/j.conbuildmat.2005.12.011
Benayoune A, Samad AAA, Trikha DN, Ali AAA, Ellinna SHM (2008) Flexural behaviour of pre-cast concrete sandwich composite panel-experimental and theoretical investigations. Construction & Building Materials 22(4):580–592, DOI: https://doi.org/10.1016/j.conbuildmat.2006.11.023
Cantero B, Bravo M, de Brito J, Sáez del Bosque IF, Medina C (2021) Water transport and shrinkage in concrete made with ground recycled concrete-additioned cement and mixed recycled aggregate. Cement & Concrete Composites 118:103957, DOI: https://doi.org/10.1016/j.cemconcomp.2021.103957
Chen A, Norris TG, Hopkins PM, Yossef M (2015) Experimental investigation and finite element analysis of flexural behavior of insulated concrete sandwich panels with FRP plate shear connectors. Engineering Structures 98:95–108, DOI: https://doi.org/10.1016/j.engstruct.2015.04.022
Chen X, Sierens Z, Gruyaert E, Li J (2023) Precast concrete wall panels incorporating mixed recycled aggregates. ACI Materials Journal 120(1):75–88, DOI: https://doi.org/10.14359/51737333
Correia JR, Ferreira J, Branco FA (2006) A rehabilitation study of sandwich GRC facade panels. Construction & Building Materials 20(8):554–561, DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.066
Daniel Ronald Joseph J, Prabakar J, Alagusundaramoorthy P (2018) Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending. Alexandria Engineering Journal 57(1):309–320, DOI: https://doi.org/10.1016/j.aej.2016.11.016
Dey V, Zani G, Colombo M, Di Prisco M, Mobasher B (2015) Flexural impact response of textile-reinforced aerated concrete sandwich panels. Materials & Design 86:187–197, DOI: https://doi.org/10.1016/j.matdes.2015.07.004
Etxeberria M, Marí AR, Vázquez E (2007) Recycled aggregate concrete as structural material. Materials and Structures 40(5):529–541, DOI: https://doi.org/10.1617/s11527-006-9161-5
Evangelista L, de Brito J (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites 32(1):9–14, DOI: https://doi.org/10.1016/j.cemconcomp.2009.09.005
Fan CC, Huang R Hwang H, Chao SJ (2015) The effects of different fine recycled concrete aggregates on the properties of mortar. Materials 8(5):2658–2672, DOI: https://doi.org/10.3390/ma8052658
Flansbjer M, Williams Portal N, Vennetti D, Mueller U (2018) Composite behaviour of textile reinforced reactive powder concrete sandwich façade elements. International Journal of Concrete Structures and Materials 12(7):1027–1043, DOI: https://doi.org/10.1186/s40069-018-0301-4
GB 50010-2010 (2010) Code for design of concrete structures. China: China Architecture & Building Press
GB/T 25177-2010 Recycled coarse aggregate for concrete. China: China Architecture & Building Press
Gombeda MJ, Naito CJ, Quiel SE (2018) Performance-based framework for evaluating the flexural response of precast concrete wall panels to blast loading. Engineering Structures 168:473–486, DOI: https://doi.org/10.1016/j.engstruct.2018.04.050
Hopkins PM, Chen A, Yossef M (2017) Static and dynamic analyses of insulated concrete sandwich panels using a unified non-linear finite element model. Engineering Structures 132:249–259, DOI: https://doi.org/10.1016/j.engstruct.2016.11.017
Huang Q, Hamed E (2019) Nonlinear finite element analysis of composite precast concrete sandwich panels made with diagonal FRP bar connectors. Composite Structures 212:304–316, DOI: https://doi.org/10.1016/j.compstruct.2019.01.019
Kim YJ, Allard A (2014) Thermal response of precast concrete sandwich walls with various steel connectors for architectural buildings in cold regions. Energy and Buildings 80:137–148, DOI: https://doi.org/10.1016/j.enbuild.2014.05.022
Kripanarayanan KM (1977) Interesting aspects of the empirical wall design equation. Journal of the American Concrete Institute 74(5):204–207, DOI: https://doi.org/10.14359/11002
Lee JH, Kang SH, Ha YJ, Hong SG (2018) Structural behavior of durable composite sandwich panels with high performance expanded polystyrene concrete. International Journal of Concrete Structures and Materials 12:1–13, DOI: https://doi.org/10.1186/s40069-018-0255-6
Liu X, Wu J, Yan PP, Ji WY (2021a) Grading method of mixed recycled coarse aggregate. Journal of Materials in Civil Engineering 33(5), DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003682
Liu X, Wu J, Zhao X, Yan PP, Ji WY (2021b) Effect of brick waste content on mechanical properties of mixed recycled concrete. Construction & Building Materials 292:123320, DOI: https://doi.org/10.1016/j.conbuildmat.2021.123320
Ma ZM, Tang Q, Yang DY, Ba GZ (2019) Durability studies on the recycled aggregate concrete in china over the past decade: A review. Advances in Civil Engineering 2019:1–19, DOI: https://doi.org/10.1155/2019/4073130
Mefteh H, Kebaïli O, Oucief H, Berredjem L, Arabi N (2013) Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production 54:282–288, DOI: https://doi.org/10.1016/j.jclepro.2013.05.009
Miličević I, Bjegović D, Siddique R (2015) Experimental research of concrete floor blocks with crushed bricks and tiles aggregate. Construction and Building Materials 94:775–783, DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.163
Montero J, Laserna S (2017) Influence of effective mixing water in recycled concrete. Construction & Building Materials 132:343–352, DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.006
Norris TG, Chen A (2016) Development of insulated FRP-confined precast concrete sandwich panel with side and top confining plates and dry bond. Composite Structures 152:444–454, DOI: https://doi.org/10.1016/j.compstruct.2016.05.053
O’Hegarty R, Reilly A, West R, Kinnane O (2020) Thermal investigation of thin precast concrete sandwich panels. Journal of Building Engineering 27:100937, DOI: https://doi.org/10.1016/j.jobe.2019.100937
Oberlender GD, Everard NJ (1977) Investigation of reinforced concrete wall panels. Journal of the American Concrete Institute 74(6):256–263, DOI: https://doi.org/10.14359/11010
Padmini AK, Ramamurthy K, Mathews MS (2009) Influence of parent concrete on the properties of recycled aggregate concrete. Construction & Building Materials 23(2):829–836, DOI: https://doi.org/10.1016/j.conbuildmat.2008.03.006
Pillai SU, Parthasarathy CV (1977) Ultimate strength and design of concrete walls. Building and Environment 12(1):25–29, DOI: https://doi.org/10.1016/0360-1323(77)90003-8
Poon CS, Qiao XC, Chan D (2006) The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base. Waste management 26(10):1166–1172, DOI: https://doi.org/10.1016/j.wasman.2005.12.013
Richardson A, Coventry K, Bacon J (2011) Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete. Journal of Cleaner Production 19(2):272–277, DOI: https://doi.org/10.1016/j.jclepro.2010.09.014
Saheb SM, Desayi P (1989) Ultimate strength of RC wall panels in oneway in-plane action. Journal of Structural Engineering 115(10):2617–2630, DOI: https://doi.org/10.1061/(ASCE)0733-9445(1989)115:10(2617)
Shams A, Stark A, Hoogen F, Hegger J, Schneider H (2015) Innovative sandwich structures made of high-performance concrete and foamed polyurethane. Composite Structures 121:271–279, DOI: https://doi.org/10.1016/j.compstruct.2014.11.026
Shang H, Zhao T, Cao W (2015) Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles. Cold Regions Science and Technology 118:38–44, DOI: https://doi.org/10.1016/j.coldregions.2015.06.008
Srivaro S, Chaowana P, Matan N, Kyokong B (2014) lightweight sandwich panel from oil palm wood core and rubberwood veneer face. Journal of Tropical Forest Science 26(1):50–57, DOI: https://doi.org/10.5558/tfc2014-017
Su T, Wang T, Wang CG, Yi HH (2022) The influence of salt-frost cycles on the bond behavior distribution between rebar and recycled coarse aggregate concrete. Journal of Building Engineering 45:103568, DOI: https://doi.org/10.1016/j.jobe.2021.103568
Su T, Wu J, Yang GX, Zou ZH (2019) Bond behavior between recycled coarse aggregate concrete and steel bar after salt-frost cycles. Construction & Building Materials 226:673–685, DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.301
Tam VWY, Soomro M, Evangelista ACJ (2018) A review of recycled aggregate in concrete applications (2000–2017). Construction & Building Materials 172(30):272–292, DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.240
Tomlinson D, Fam A (2015) Flexural behavior of precast concrete sandwich wall panels with basalt FRP and steel reinforcement. PCI Journal 60(6):51–71, DOI: https://doi.org/10.15554/pcij.11012015.51.71
Tomlinson D, Fam A (2016) Analysis and parametric study of partially composite precast concrete sandwich panels under axial loads. Journal of Structural Engineering 142(10):04016086, DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001560
Williams Portal N, Flansbjer M, Zandi K, Wlasak L, Malaga K (2017) Bending behaviour of novel textile reinforced concrete-foamed concrete (TRC-FC) sandwich elements. Composite Structures 177: 104–118, DOI: https://doi.org/10.1016/j.compstruct.2017.06.051
Yan PP, Wu J, Lin DD, Liu X (2022) Uniaxial compressive stress-strain relationship of mixed recycled aggregate concrete. Construction & Building Materials 350:128663, DOI: https://doi.org/10.1016/j.conbuildmat.2022.128663
Yang J, Du Q, Bao Y (2011) Concrete with recycled concrete aggregate and crushed clay bricks. Construction & Building Materials 25(4):1935–1945, DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.063