Độ phong phú của các loài chim trong một hệ sinh thái thường xuyên bị cháy: một mối liên hệ giữa độ đa dạng sinh học sau cháy và sự đa dạng sinh học

Springer Science and Business Media LLC - Tập 37 - Trang 983-996 - 2022
Marcelo H. Jorge1,2, L. Mike Conner3, Elina P. Garrison4, Michael J. Cherry1,5
1Department of Fisheries and Wildlife Conservation, Virginia Tech, Blacksburg, USA
2Warnell School of Forestry and Natural Resources, University of Georgia, Athens, USA
3The Jones Center at Ichauway, Newton, USA
4Florida Fish and Wildlife Conservation Commission, Gainesville, USA
5Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, USA

Tóm tắt

Lửa ảnh hưởng đến sự phân bố của các hệ sinh thái trên Trái Đất, nhưng mối liên hệ giữa độ đa dạng sau cháy, sự không đồng nhất trong các điều kiện sau cháy, và sự đa dạng sinh học đang dần được khám phá. Chúng tôi đã kiểm tra giả thuyết rằng độ đa dạng sau cháy dẫn đến sự đa dạng sinh học, giả thuyết này đã được phát triển trên quy mô rộng hơn, nhằm áp dụng vào quy mô mà các quyết định quản lý đất đai thường được thực hiện. Để đánh giá ảnh hưởng của các thuộc tính cảnh quan lên sự phong phú của các loài chim, chúng tôi đã triển khai các máy ghi âm có thể lập trình tại 34 địa điểm trong một hệ sinh thái thông cứng (Pinus palustris) thường xuyên cháy, được cài đặt để ghi âm ba phiên 5 phút mỗi ngày trong sáu ngày liên tục trong hai năm. Chúng tôi xác định các loài chim thông qua các âm thanh của chúng và phân nhóm theo các guild làm tổ và kiếm ăn để đánh giá ảnh hưởng của loại hình phủ đất, năng suất đất, cấu trúc rừng và đặc điểm lịch sử cháy, bao gồm độ đa dạng sau cháy đối với sự phong phú và tỷ lệ cư trú của từng cộng đồng, guild và loài, bằng cách sử dụng các mô hình hồi quy phân cấp của sự cư trú đa loài. Chúng tôi định nghĩa độ đa dạng sau cháy là sự phong phú của các giá trị thời gian kể từ khi xảy ra cháy xung quanh một địa điểm. Chúng tôi đã tìm thấy sự ủng hộ cho giả thuyết rằng độ đa dạng sau cháy dẫn đến sự đa dạng sinh học ở cấp độ cộng đồng, khi sự phong phú của các loài chim tăng lên với độ đa dạng sau cháy (β = 0.136, 95% CrI 0.009–0.260). Sự phong phú của các loài làm tổ trong các lỗ giảm đi với thời gian kể từ khi xảy ra cháy, cho thấy rằng việc cháy thường xuyên làm tăng sự đa dạng của guild này (β = −0.334, 95% CrI −0.713 đến −0.003). Nghiên cứu của chúng tôi nhấn mạnh tầm quan trọng của độ đa dạng sau cháy như một yếu tố thúc đẩy sự đa dạng sinh học, và liên kết lý thuyết với thực tiễn thông qua việc xem xét hiện tượng này ở quy mô dễ dàng được chuyển đổi thành hành động bảo tồn.

Từ khóa

#đa dạng sinh học #hệ sinh thái bị cháy #độ phong phú của loài #sự không đồng nhất #quản lý đất đai

Tài liệu tham khảo

Allen JC, Krieger SM, Walters JR, Collazo JA, Stouffer PC (2006) Associations of breeding birds with fire-influenced and riparian-upland gradients in a longleaf pine ecosystem. Auk 123:1110–1128 Andersen AN, Ribbons RR, Pettit M, Parr CL (2014) Burning for biodiversity: highly resilient ant communities respond only to strongly contrasting fire regimes in Australia’s seasonal tropics. J Appl Ecol 51:1406–1413 Beale CM, Courtney Mustaphi CJ, Morrison TA, Archibald S, Anderson TM, Dobson AP, Donaldson JE, Hempson GP, Probert J, Parr CL (2018) Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol Lett 21:557–567 Bond WJ, Parr CL (2010) Beyond the forest edge: ecology, diversity, and conservation of the grassy biomes. Biol Cons 143:2395–2404 Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538 Brockett BH, Biggs HC, Van Wilgen BW (2001) A patch mosaic burning system for conservation areas in southern African savannas. Int J Wildland Fire 10:169–183 Brockway DG, Outcalt KW, Tomczak DJ, and Johnson EE (2005) Restoration of longleaf pine ecosystems. General Technical Reports SRS-83. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 34: 83 Burger Jr LW, Hardy C, Bein J (1998) Effects of prescribed fire and midstory removal on breeding bird communities in mixed pine-hardwood ecosystems of south- ern Mississippi. In: Pruden TL, Brennan LA (eds.) Fire in ecosystem management: shifting the paradigm from suppression to prescription, Proceedings of the Tall Timbers Fire Ecology Conference, Tall Timbers Research Station, Tallahassee, FL. 20: 107–113. Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814 Christensen NL (1981) Fire regimes in southeastern ecosystems. In Mooney HA, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (technical coordinators), Proceedings of the Conference Fire Regimes and Ecosystem Properties, December 11–15, 1978, Honolulu, HI. General Technical Report WO-GTR-26. Washington, DC: USDA Forest Service 594: 112–136 Conner RN, Shackelford CE, Schaefer RR, Saenz D, Craig Rudolph D (2002) Avian community response to southern pine ecosystem restoration for Red-cockaded Woodpeckers. Wilson Bull 114:324–332 Davies AB, Eggleton P, van Rensburg BJ, Parr CL (2012) The pyrodiversity–biodiversity hypothesis: a test with savanna termite assemblages. J Appl Ecol 49:422–430 Davis MA, Peterson DW, Reich PB, Crozier M, Query T, Mitchell E, Huntington J, Bazakas P (2000) Restoring savanna using fire: impact on the breeding bird community. Restor Ecol 8:30–40 Dickson JG, Conner RN, Williamson JH (1991) Breeding bird community changes in a developing pine plantation. Bird Popul 1:28–35 Dorazio RM, Royle JA (2005) Estimating size and composition of biological communities by modeling the occurrence of species. J Am Stat Assoc 100:389–398 Dorazio RM, Royle JA, Soderstrom B, Glimskar A (2006) Estimating species richness and accumulations by modeling species occurrence and detectability. Ecology 87:842–854 Farnsworth LM, Nimmo DG, Kelly LT, Bennett AF, Clarke MF (2014) Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Divers Distrib 20:663–673 Fernandes GW, Barbosa NPU, Alberton B, Barbieri A, Dirzo R, Goulart F, Guerra TJ, Morellato LPC, Solar RRC (2018) The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands. Biodivers Conserv 27:2587–2603 Florida Fish and Wildlife Conservation Commission (2017) Camp blanding wildlife management area regulations summary and area map webpage 2017. https://myfwc.com/hunting/wma-brochures/north-central/camp-blanding/. Accessed 20 February 2018 Fontaine JB, Kennedy PL (2012) Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests. Ecol Appl 22:1547–1561 Francis AP, Currie DJ (2003) A globally consistent richness—climate relationship for angiosperms. Am Nat 161:523–536 Frost CC (1993) Four centuries of changing landscape patterns in the longleaf pine ecosystem. Proc Tall Timbers Fire Ecol Conf 18:17–43 Fuller AK, Linden DW, Royle JA (2016) Management decision making for fisher populations informed by occupancy modeling. J Wildl Manage 80:794–802 Furnas BJ, Callas RL (2015) Using automated recorders and occupancy models to monitor common forest birds across a large geographic region. J Wildl Manage 79:325–337 Gates JE, Giffen NR (1991) Neotropical migrant birds and edge effects at a forest-stream ecotone. Wilson Bull 103:204–217 Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103 Grinde AR, Niemi GJ, Sturtevant BR, Panci H, Thogmartin W, Wolter P (2017) Importance of scale, land cover, and weather on the abundance of bird species in a managed forest. For Ecol Manage 405:295–308 Hamel PB (1992) Land manager's guide to birds of the south. General Technical Report. SE-22. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 437: 22. Hankin RKS (2005) Introducing BACCO, an R bundle for Bayesian analysis of computer code output. J Stat Softw 14:16 Harte J (2011) Maximum entropy and ecology: a theory of abundance, distribution, and energetics. OUP, Oxford Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117 He T, Lamont BB (2018) Fire as a potent mutagen driving the evolution of terrestrial plants. Crit Rev Plant Sci 37:1–14 He T, Lamont BB, Pausas JG (2019) Fire as a key driver of earth’s biodiversity. Biol Rev 94:1983–2010 Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427 Jorge MH, Garrison EP, Conner LM, Cherry MJ (2020) Fire and land cover drive predator abundances in a pyric landscape. For Ecol Manage 461:117939 Kellner K. 2015. jagsUI: a wrapper around rjags to streamline JAGS analyses. Accessed https://github.com/kenkellner/jagsUI Kery M, Royle JA (2015) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS: volume 1: prelude and static models. Academic Press, Cambridge, pp 682–708 Kirby RB, Cherry MJ, Muller LI, Warren RJ, Chamberlain MJ, Conner LM (2016) Indirect predation management in a longleaf pine ecosystem: hardwood removal and the spatial ecology of raccoons. For Ecol Manage 381:327–334 Kirkman LK, Mitchell RJ (2006) Conservation management of Pinus palustris ecosystems from a landscape perspective. Appl Veg Sci 9:67–74 Kotliar NB, Kennedy PL, Ferree K (2007) Avifaunal responses to fire in Southwestern Montane forests along a burn severity gradient. Ecol Appl 17:491–507 Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930 Landers JL, Mueller BS (1986) Bobwhite quail management: a habitat approach. Tall timbers research station and quail unlimited, Tallahassee, Florida, USA. Southwest Nat 29:105–113 Landers JL (1987) Prescribed burning for managing wildlife in southeastern pine forests. Pp. 19–27. In: JG Dickson, OE Maughan (eds.) Managing southern forests for wildlife and fish–a proceedings. United States Department of Agriculture, Forest Service, General Technical Report, SF-50-65:1–85 LANDFIRE (2017) Existing vegetation type layer, LANDFIRE 1.4.0, U.S. Department of the Interior, Geological Survey. http://landfire.cr.usgs.gov/viewer/viewer.html. Accessed 20 August 2019 Lucas KE (1993) Modeling avian response to Red-cockaded Woodpecker habitat management in loblolly pine forests of east-central Mississippi. Doctoral dissertation. Mississippi State University. Mississippi State MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle AJ, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255 Maravalhas J, Vasconcelos HL (2014) Revisiting the pyrodiversity–biodiversity hypothesis: long term fire regimes and the structure of ant communities in a Neotropical savanna hotspot. J Appl Ecol 51:1661–1668 Martin TE (1993) Nest predation and nest sites: new perspectives on old patterns. Bioscience 43:1–18 Martin RE, and Sapsis DB (1992) Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In: Proceedings of the Symposium on Biodiversity in Northwestern California. Wildland Resources Centre, University of California, Berkeley, California. No. 29 McGregor HW, Legge S, Jones ME, Johnson CN (2014) Landscape management of fire and grazing regimes alters the fine-scale habitat utilization by feral cats. PLoS ONE 9:e109097 Mistry J, Berardi A, Andrade V, Krahô T, Krahô P, Leonardos O (2005) Indigenous fire management in the cerrado of Brazil: the case of the Krahô of Tocantíns. Hum Ecol 33:365–386 Morris AD, Miller DA, Kalcounis-Rueppell MC (2010) Use of forest edges by bats in a managed pine forest landscape. J Wildl Manage 74(1):26–34 Mukaka M (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858 Niemi GJ, Hanowski JM, Danz N, Howe R, Jones M, Lind J, and Mladenoff DM (2004) Hierarchical scales in landscape responses by forest birds. Landscape ecology and wildlife habitat evaluation: critical information for ecological risk assessment, land-use management activities, and biodiversity enhancement. http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP11942S.htm. Accessed 9 Nov 2019 Nowacki GJ, Abrams MD (2008) The demise of fire and “mesophication” of forests in the Eastern United States. Bioscience 58:123–138 O’Connell AF, Talancy NW, Bailey LL, Sauer JR, Cook R, Gilbert AT (2006) Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J Wildl Manage 70:1625–1633 O’Brien E (1998) Water–energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J Biogeogr 25:379–398 Omernik JM, Griffith GE (2014) Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ Manage 54:1249–1266 Parr CL, Andersen AN (2006) Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv Biol 20:1610–1619 Plummer M (2013) JAGS: just another gibbs sampler. Accessed http://mcmc-jags.sourceforge.net/ Ponisio LC, Wilkin K, M’Gonigle LK, Kulhanek K, Cook L, Thorp R, Griswold TG, Kremen C (2016) Pyrodiversity begets plant–pollinator community diversity. Glob Change Biol 22:1794–1808 Provencher L, Herring BJ, Gordon DR, Rodgers HL, Galley KEM, Tanner GW, Hardesty JL, Brennan LA (2001) Effects of hardwood reduction techniques on longleaf pine sandhill vegetation in Northwest Florida. Restor Ecol 9:13–27 Provencher L, Litt AR, Gordon DR (2003) Predictors of species richness in northwest Florida longleaf pine sandhills. Conserv Biol 17:1660–1671 R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–53 Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Pausas JG, Vargas P (2018) Fire and plant diversification in mediterranean-climate regions. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00851 Saab VA, Dudley J, Thompson WL (2004) Factors influencing occupancy of nest cavities in recently burned forests. The Condor 106:20–36 Saab VA, Powell HDW (2005) Fire and avian ecology in North America: process influencing pattern. In: Saab VA, Powell HDW (eds.) Fire and Avian Ecology in North America. Studies in Avian Biology 30: 1–13 Saxon EC (1984) Anticipating the inevitable: a patch‐burn strategy for fire management at Uluru (Ayers Rock‐Mt Olga) National Park. CSIRO Division of Wildlife and Rangelands Research, Alice Springs, Northern Territory, Australia Schaetzl RJ, Krist FJ, Miller BA (2012) A taxonomically based, ordinal estimate of soil productivity for landscape-scale analyses. Soil Sci 177:288–299 Shackelford CE, Brown RE, Conner RN (2000) Red-bellied Woodpecker (Melanerpes carolinus). In: Poole A, Gill F (eds) The birds of North America No. 500. The Birds of North America Inc., Philadelphia, p 24 Shea S (1994) Fighting fire with fire. Nature 372:399 Sitters H, Christie FJ, Di Stefano J, Swan M, Penman T, Collins PC, York A (2014) Avian responses to the diversity and configuration of fire age classes and vegetation types across a rainfall gradient. For Ecol Manage 318:13–20 Sitters H, Di Stefano J, Christie F, Swan M, York A (2016) Bird functional diversity decreases with time since disturbance: does patchy prescribed fire enhance ecosystem function? Ecol Appl 26:115–127 Soil Survey Staff (2017) Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Accessed https://websoilsurvey.sc.egov.usda.gov/ Spiegelhalter DJ, Best NG, Carlin BP, Linde AVD (2002) Bayesian measures of model complexity and fit. J R Stat Soc 64:583–639 Steen DA, Conner LM, Smith LL, Provencher L, Hiers JK, Pokswinski S, Helms BS, Guyer C (2013) Bird assemblage response to restoration of fire-suppressed longleaf pine sandhills. Ecol Appl 23:134–147 Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142:2282–2292 Supp SR, Ernest SKM (2014) Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95:1717–1723 Supp SR, Xiao X, Ernest SKM, White EP (2012) An experimental test of the response of macroecological patterns to altered species interactions. Ecology 93:2505–2511 Taylor RS, Watson SJ, Nimmo DG, Kelly LT, Bennett AF, Clarke MF (2012) Landscape-scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity? Divers Distrib 18:519–529 Tingley MW, Ruiz-Gutiérrez V, Wilkerson RL, Howell CA, Siegel RB (2016) Pyrodiversity promotes avian diversity over the decade following forest fire. Proc R Soc B 283:1840 Wade D, Lunsford JD (1989) A guide for prescribed fire in Southern forests. Technical publication. R8-TP 11. USDA Forest Service, Atlanta Waldrop TA, White DL, Jones SM (1992) Fire regimes for pine-grassland communities in the southeastern United States. For Ecol Manage 47:195–210 White DH, Chapman BR, Brunjes JH (1999) Abundance and reproduction of songbirds in burned and unburned pine forests of the Georgia Piedmont. J Field Ornithol 1999:414–424 Willis KJ, Whittaker RJ (2002) Species diversity—scale matters. Science 295:1245–1248 Wilson CW, Masters RE, Bukenhofer GA (1995) Breeding bird response to pine-grassland community restorations for Red-cockaded Woodpeckers. J Wildl Manage 59:56–67