Auxin herbicides: current status of mechanism and mode of action

Pest Management Science - Tập 66 Số 2 - Trang 113-120 - 2010
Klaus Großmann1
1BASF Agricultural Centre Limburgerhof, D‐67117 Limburgerhof, Germany

Tóm tắt

Abstract

Synthetic compounds that act like phytohormonal ‘superauxins’ have been among the most successful herbicides used in agriculture for more than 60 years. These so‐called auxin herbicides are more stable in planta than the main natural auxin, indole‐3‐acetic acid (IAA), and show systemic mobility and selective action, preferentially against dicot weeds in cereal crops. They belong to different chemical classes, which include phenoxycarboxylic acids, benzoic acids, pyridinecarboxylic acids, aromatic carboxymethyl derivatives and quinolinecarboxylic acids. The recent identification of receptors for auxin perception and the discovery of a new hormone interaction in signalling between auxin, ethylene and the upregulation of abscisic acid biosynthesis account for a large part of the repertoire of auxin‐herbicide‐mediated responses, which include growth inhibition, senescence and tissue decay in sensitive dicots. An additional phenomenon is caused by the quinolinecarboxylic acid quinclorac, which also controls grass weeds. Here, the accumulation of phytotoxic levels of tissue cyanide, derived ultimately from quinclorac‐stimulated ethylene biosynthesis, plays a key role in eliciting the herbicidal symptoms in sensitive grasses. Copyright © 2009 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1093/aob/mci083

10.1016/j.cell.2009.03.001

10.1007/s003440010034

Cobb AH, 1992, Herbicides and Plant Physiology, 82

Sterling TM, 1997, Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, 111

10.1007/s00344-003-0020-0

Fedtke C, 2005, Plant Toxicology, 247

Dayan FE, 2009, Herbicides as probes in plant biology, Weed Sci

10.1007/978-94-011-0473-9_34

10.1007/978-94-009-3585-3_31

10.1038/274401a0

10.2307/3869584

10.1021/cr60123a001

Grossmann K, 2000, Herbicides and their Mechanisms of Action, 181

10.1016/j.pestbp.2007.04.002

10.1038/nature03543

10.1016/j.devcel.2005.05.014

10.1038/nature03542

10.1038/nature05731

10.1093/jxb/erm011

10.1023/A:1015207114117

10.1038/446621a

10.1104/pp.106.085969

10.1016/j.tplants.2006.03.001

10.1105/tpc.108.059048

10.1007/s00344-007-0013-5

10.1007/BF00029539

Abeles FB, 1992, Ethylene in Plant Biology

10.1016/S1360-1385(00)01791-X

10.1016/S0176-1617(11)81423-9

10.1016/S0176-1617(96)80153-2

10.1104/pp.124.3.1437

10.1104/pp.102.017921

Taylor IB, 2005, Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors, J Plant Growth Regul, 24, 253

10.1007/s10142-005-0012-1

10.1093/jexbot/52.362.1811

10.1111/j.1365-3040.2004.01219.x

10.1007/s000180050041

10.1034/j.1399-3054.2001.1130102.x

Grossmann K, 2003, Protection. Progress and Prospects in Science and Regulation, 131

10.1104/pp.94.3.1143

10.1104/pp.65.6.1199

Solomanson LP, 1981, Cyanide in Biology, 11

10.1016/j.phytochem.2008.02.019

10.1007/BF02706632

10.1073/pnas.81.10.3059

10.1111/j.1399-3054.1996.tb00543.x

10.1104/pp.88.2.473

10.1002/9780470513712.ch7

10.1034/j.1399-3054.2000.100210.x

Ververidis P, 1995, Catalytic and noncatalytic inactivation of ACC oxidase, PGRSA, 23, 81

10.1016/S0168-9452(03)00306-6

10.1007/BF00206302

10.1104/pp.78.2.285

10.1104/pp.102.018887

Yip W‐Y, 1998, Ethylene biosynthesis in relation to cyanide metabolism, Bot Bull Acad Sin, 39, 1

10.1006/pest.1995.1015

10.1006/pest.1997.2290

10.1006/pest.1999.2461

10.1016/j.pestbp.2005.05.003

10.1016/j.phytochem.2008.06.012

10.1007/BF00024169