Auxetic behaviour from rotating rigid units

Physica Status Solidi (B): Basic Research - Tập 242 Số 3 - Trang 561-575 - 2005
Joseph N. Grima1, Andrew Alderson2, K. Evans3
1www: http://home.um.edu.mt/auxetic
2Centre for Materials Research and Innovation, Bolton Institute, Bolton, BL3 5AB, UK
3Department of Engineering, University of Exeter, Exeter EX4 4QF, UK

Tóm tắt

AbstractAuxetic materials exhibit the unexpected feature of becoming fatter when stretched and narrower when compressed, in other words, they exhibit a negative Poisson's ratio. This counter‐intuitive behaviour imparts many beneficial effects on the material's macroscopic properties that make auxetics superior to conventional materials in many commercial applications. Recent research suggests that auxetic be‐haviour generally results from a cooperative effect between the material's internal structure (geometry setup) and the deformation mechanism it undergoes when submitted to a stress. Auxetic behaviour is also known to be scale‐independent, and thus, the same geometry/deformation mechanism may operate at the macro‐, micro‐ and nano‐ (molecular) level. A considerable amount of research has been focused on the ‘re‐entrant honeycomb structure’ which exhibits auxetic behaviour if deformed through hinging at the joints or flexure of the ribs, and it was proposed that this ‘re‐entrant’ geometry plays an impor‐ tant role in generating auxetic behaviour in various forms of materials ranging from nanostructured polymers to foams. This paper discusses an alternative mode of deformation involving ‘rotating rigid units’ which also results in negative Poisson's ratios. In its most ideal form, this mechanism may be construc‐ ted in two dimensions using ‘rigid polygons’ connected together through hinges at their vertices. On application of uniaxial loads, these ‘rigid polygons’ rotate with respect to each other to form a more open structure hence giving rise to a negative Poisson's ratio. This paper also discusses the role that ‘rotating rigid units’ are thought to have in various classes of materials to give rise to negative Poisson's ratios. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Từ khóa


Tài liệu tham khảo

10.1038/353124a0

10.1143/JPSJ.72.1819

A. E. H.Love A Treatise on the Mathematical Theory of Elasticity 4th ed. (Dover New York 1944).

10.1088/0022-3719/17/26/007

10.1126/science.235.4792.1038

10.1016/0956-7151(94)90145-7

10.1177/002199839502900106

10.1177/0021955X9803400304

10.1016/S1359-6454(00)00269-X

10.1016/0032-3861(92)90294-7

10.1038/365735a0

10.1021/ma970787m

J. N.GrimaandK. E.Evans Chem. Commun. 1531 (2000).

10.1023/A:1006781224002

J. P.DonoghueandK. E.Evans in: Proc. ICCM 8 edited by S. W. Tsai and G. S. Springer (SAMPE Covina CA 1991) 2‐K‐1.

10.1016/0010-4361(94)90027-2

10.1021/ma00205a036

10.1063/1.460672

10.1016/0022-5096(92)90063-8

10.1038/32842

10.1126/science.257.5070.650

10.1103/PhysRevB.46.1

10.1103/PhysRevLett.84.5548

10.1103/PhysRevLett.89.225503

10.1103/PhysRevB.67.024105

10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7

J. N.Grima PhD Thesis University of Exeter Exeter UK (2000).

10.1098/rspa.1982.0087

10.1007/BF00042531

10.1016/S0263-8223(96)00054-2

10.1063/1.461966

10.1021/ie990572w

10.1080/00268978700101761

10.1103/PhysRevA.40.7222

10.1088/0305-4470/36/47/005

10.1016/S0020-7403(96)00025-2

10.1557/JMR.1998.0145

10.1103/PhysRevE.58.6173

10.1134/1.1131137

10.1088/0022-3727/22/12/013

10.1007/BF00349875

10.1023/A:1018660130501

J. N.Grima A.Alderson andK. E.Evans:Zeolites with negative Poisson's ratios Paper presented at the RSC 4thInternational Materials Conference (MC4) Dublin Ireland P81 July 1999.

10.1143/JPSJ.69.2702

10.1103/PhysRevB.65.094101

J. F.Nye Physical Properties of Crystals (Clarendon Oxford 1957).

J. N.Grima R.Gatt A.Alderson andK. E.Evans in: Modeling the auxetic behaviour in alpha‐cristobalite Paper presented at the 228th ACS National Meeting Philadelphia USA August 2004.

10.1021/j100389a010