Autowave mechanics of plastic flow in solids
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. B. Zuev, V. I. Danilov, and S.A. Barannikova, Plastic Flow Macrolocalization Physics (Nauka, Novosibirsk, 2008) [in Russian].
J. Friedel, Dislocations (Pergamon Press, Oxford, 1964).
D. Kuhlmann-Wilsdorf, “The LES Theory of Solid Plasticity,” in Dislocations in Solids, Ed. by F. R. N. Nabarro and M.S. Duesbery (Elsevier, Amsterdam, 2002), pp. 213–338.
A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon Press, Oxford, 1953).
A. N. Orlov, “Some Problems of the Kinetics of Defects in Crystals,” in Problems of the Theory of Defects in Crystals (Nauka, Leningrad, 1987), pp. 6–23 [in Russian].
E. M. Lifshitz and L.P. Pitaevsky, Physical Kinetics (Pergamon, Oxford, 1980).
Yu. L. Klimontovich, Introduction to the Physics of Open Systems (Yanus-K, Moscow, 2002) [in Russian].
A. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 2003).
L. B. Zuev, V. I. Danilov, S. A. Barannikova, and V.V. Gorbatenko, “Autowave Model of Localized Plastic Flow of Solids,” Phys. Wave Phenom. 17(1), 66 (2009), DOI: 10.3103/S1541308X09010117.
M. Zaiser and E. C. Aifantis, “Randomness and Slip Avalanches in Gradient Plasticity,” Int. J. Plasticity. 22, 1432 (2006).
V. A. Vasil’ev, Yu. M. Romanovskii, and V.G. Yakhno, Autowave Processes (Nauka, Moscow, 1987) [in Russian].
G. A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw Hill Book Comp., N.Y., 1961).
V. I. Vladimirov, “Collective Effects in Ensembles of Defects,” in Problems of the Theory of Defects in Crystals (Nauka, Leningrad, 1987), pp. 43–57 [in Russian].
G. A. Malygin, “Dislocation Self-Organization Processes and Crystal Plasticity,” Phys.-Usp. 42(9), 887 (1999).
R. Hill, The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford, 1998).
B. B. Kadomtsev, Dynamics and Information (Redaktsiya UFN, Moscow, 1997) [in Russian].
D. I. Trubetskov, Introduction to Synergetics. Vibrations and Waves (URSS, Moscow, 2003) [in Russian].
A. I. Slutsker, “Atomic Scale of Solids Fractures Fluctuation Mechanism,” Phys. Solid State. 47, 777 (2005).
D. J. Hudson, Statistics (CERN, Geneva, 1964).
Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 2002).
L. B. Zuev, B.S. Semukhin, and N.V. Zarikovskaya, “Deformation Localization and Ultrasonic Wave Propagation Rate in Tensile Al as a Function of Grain Size,” Int. J. Solids Struct. 40, 941 (2003).
G. Murdie, “The Models of Populations,” in Mathematical Modelling, Ed. by J. G. Andrews and R. R. McLone (Butterworth, London, 1976).
A. L. Roitburd, “Physical Models of Strain Hardening of Crystals,” in Physics of Strain Hardening of Single Crystals (Naukova Dumka, Kiev, 1972), pp. 5–22 [in Russian].
L. B. Zuev, “The Linear Work Hardening Stage and de Broglie Equation for Autowaves of Localized Plasticity,” Int. J. Solids Struct. 42, 943 (2005).
L. B. Zuev and S.A. Barannikova, “Plastic Flow Macrolocalization: Autowaves and Quasi-Particles,” J. Mod. Phys. 1, 1 (2010).
N. B. Brandt and V.A. Kul’bachinskii, Quasiparticles in Physics of Condensed State (Fizmatlit, Moscow, 2007) [in Russian].
E. M. Morozov, L.S. Polak, and Ya. B. Fridman, “Variational Principles in the Development of Cracks in Solids,” Sov.-Phys. Dokl. 9, 394 (1964).
H. Umezava, H. Matsumoto, and M. Tachiki, Thermo-Field Dynamics and Condensed States (North-Holland Publ. Comp., Amsterdam, 1982).
V. I. Dotsenko, A. I. Landau, and V.V. Pustovalov, Modern Problems of Low-Temperature Plasticity of Materials (Naukova Dumka, Kiev, 1987) [in Russian].
L. B. Zuev and B.S. Semukhin, “Some Acoustic Properties of a Deforming Medium,” Philos. Mag. A. 82, 1183 (2002).
E. S. Nikitin, B.S. Semukhin, and L. B. Zuev, “Localized Plastic Flow and Spatiotemporal Distribution of Acoustic Emission in Steel,” Tech. Phys. Lett. 34, 666 (2008).