Autonomous positioning utilizing star sensor and inclinometer

Measurement - Tập 131 - Trang 132-142 - 2019
Xinguo Wei1, Caiyun Cui1, Gangyi Wang1, Xiaowei Wan1
1Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University (BUAA), Beijing 100191, China

Tài liệu tham khảo

Xu, 2008, Velocity and position error compensation using strapdown inertial navigation system/celestial navigation system integration based on ensemble neural network, Aerosp. Sci. Technol., 12, 302, 10.1016/j.ast.2007.08.005 Ning, 2009, A new autonomous celestial navigation method for the lunar rover, Rob. Auton. Syst., 57, 48, 10.1016/j.robot.2008.02.006 F. Pappalardi, S.J. Dunham, M.E. LeBlang, et al., Alternatives to GPS, pp. 1452–1459. Zhao, 2016, Star identification algorithm based on K-L transformation and star walk formation, IEEE Sens. J., 16, 5202, 10.1109/JSEN.2016.2553245 Liebe, 2002, Accuracy performance of star trackers-a tutorial, IEEE Trans. Aerosp. Electron. Syst., 38, 587, 10.1109/TAES.2002.1008988 Liebe, 1995, Star trackers for attitude determination, IEEE Aerosp. Electron. Syst. Mag., 10, 10, 10.1109/62.387971 J. Yang, L.-T. Kong, K. Xiong, Study on the Fast Optimal Direction Determination for Missile-Borne Star Sensor, pp. 237–244. Liu, 2013, Precise attitude determination of ship based on star sensor, Appl. Mech. Mater., 380–384, 995, 10.4028/www.scientific.net/AMM.380-384.995 Rad, 2014, Optimal attitude and position determination by integration of INS, star tracker, and horizon sensor, IEEE Aerosp. Electron. Syst. Mag., 29, 20, 10.1109/MAES.2014.130093 Li, 2013, An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor, Sci. World J., 9, 1 Wang, 2012, An autonomous navigation scheme based on geomagnetic and starlight for small satellites, Acta Astron., 81, 40, 10.1016/j.actaastro.2012.07.013 Wei, 2014, Autonomous orientation for LEO spacecraft using multi-FOV star tracker, Infra. Laser Eng., 6, 1812 Zhou, 2015, Novel autonomous on-orbit calibration method for star sensors, Opt. Lasers Eng., 67, 135, 10.1016/j.optlaseng.2014.11.009 Ning, 2013, Autonomous satellite navigation using starlight refraction angle measurements, Adv. Space Res., 51, 1761, 10.1016/j.asr.2012.12.008 Ning, 2014, A two-mode INS/CNS navigation method for lunar rovers, IEEE Trans. Instrum. Meas., 63, 2170, 10.1109/TIM.2014.2307972 Wang, 2015, Integrated navigation method of a marine strapdown inertial navigation system using a star sensor, Meas. Sci. Technol., 26, 1, 10.1088/0957-0233/26/11/115101 Yang, 2017, Local observability analysis of star sensor installation errors in a SINS/CNS integration system for near-earth flight vehicles, Sensors, 17, 1 Y. Pan, H. Wang, Y. Shen, et al., Influence of Atmospheric Turbulence on Detecting Performance of All-Day Star Sensor, pp. 1–6. Rossi, 1989, Performance of a day time star sensor for a stabilized balloon platform, IEEE Trans. Nucl. Sci., 36, 876, 10.1109/23.34569 Samaan, 2008, Compass star tracker for GPS-like applications, IEEE Trans. Aerosp. Electron. Syst., 44, 1629, 10.1109/TAES.2008.4667738 Li, 2011, An autonomous navigation algorithm using star sensor, Sci. Technol. Innov. Herald, 32, 10 D.A. Sigel, D. Wettergreen, Star Tracker Celestial Localization System for a Lunar Rover, pp. 2851–2856. J. Enright, T. Barfoot, M. Soto, Star Tracking for Planetary Rovers, pp. 1–13. Meeus, 1991 Soffel, 2013 Perryman, 1997, The HIPPARCOS catalogue, Astron. Astrophys., 323, L49 Shuster, 1981, Three-axis attitude determination from vector observations, J. Guid. Contr., 4