Automatic deduction in (dynamic) geometry: Loci computation

Computational Geometry - Tập 47 - Trang 75-89 - 2014
Francisco Botana1, Miguel A. Abánades2
1Departamento de Matemática Aplicada I, Universidad de Vigo, Campus A Xunqueira, 36005 Pontevedra, Spain
2CES Felipe II, Universidad Complutense de Madrid, 28300 Aranjuez, Spain

Tài liệu tham khảo

Gelernter, 1963, Realization of a geometry-theorem proving machine, 134 Wu, 1994 Wu, 1984, Some recent advances in mechanical theorem proving of geometries, vol. 29, 235 Wu, 1986, Basic principles of mechanical theorem proving in geometries, Journal of Automated Reasoning, 2, 221, 10.1007/BF02328447 Wang, 1987, Geometry theorems proved mechanically using Wuʼs method – Part on Euclidean geometry, MM Research Preprints, 2, 75 Chou, 1988 Buchberger, 1985, Gröbner bases: an algorithmic method in polynomial ideal theory, 184 Kapur, 1986, Geometry theorem proving using Hilbertʼs Nullstellensatz, 202 Chou, 1986, Proving geometry theorems with rewrite rules, Journal of Automated Reasoning, 2, 253, 10.1007/BF02328448 Kutzler, 1986, Automated geometry theorem proving using Buchbergerʼs algorithm, 209 Kapur, 1988, Wuʼs method and its application to perspective viewing, Artificial Intelligence, 37, 15, 10.1016/0004-3702(88)90048-3 Recio, 1999, Automatic discovery of theorems in elementary geometry, Journal of Automated Reasoning, 23, 63, 10.1023/A:1006135322108 X.S. Gao, J.Z. Zhang, S.C. Chou, Geometry Expert, Nine Chapters, Taiwan, 1998. Wang, 1996, Geother: A geometry theorem prover, vol. 1104, 166 Botana, 2002, A dynamic–symbolic interface for geometric theorem discovery, Computers and Education, 38, 21, 10.1016/S0360-1315(01)00089-6 Roanes-Lozano, 2003, A bridge between dynamic geometry and computer algebra, Mathematical and Computer Modelling, 37, 1005, 10.1016/S0895-7177(03)00115-8 Escribano, 2010, Adding remote computational capabilities to dynamic geometry systems, Mathematics and Computers in Simulation, 80, 1177, 10.1016/j.matcom.2008.04.019 Montes, 2010, Gröbner bases for polynomial systems with parameters, Journal of Symbolic Computation, 45, 1391, 10.1016/j.jsc.2010.06.017 Dewar, 2000, OpenMath: An overview, ACM SIGSAM Bulletin, 34, 2, 10.1145/362001.362008 Botana, 2002, Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments, vol. 2330, 211 Lebmeir, 2007, Recognition of computationally constructed loci, vol. 4869, 52 Gerhäuser, 2011, Automatic calculation of plane loci using Gröbner bases and integration into a dynamic geometry system, vol. 6877, 68 Chou, 1984, Proving elementary geometry theorems using Wuʼs algorithm, vol. 29, 243 Roanes-Macías, 2001, Automatic determination of geometric loci. 3d-Extension of Simson–Steiner theorem, vol. 1930, 157 Kapur, 1986, Using Gröbner bases to reason about geometry problems, Journal of Symbolic Computation, 2, 399, 10.1016/S0747-7171(86)80007-4 Winkler, 1990, Gröbner bases in geometry theorem proving and simplest degeneracy conditions, Mathematica Pannonica, 1, 15 Botana, 2011, On the parametric representation of dynamic geometry constructions, vol. 6785, 342 Todd, 2007, Geometry expressions: a constraint based interactive symbolic geometry system, vol. 4689, 189 Caprotti, 2001, On the role of OpenMath in interactive mathematical documents, Journal of Symbolic Computation, 351, 10.1006/jsco.2000.0466 Barendregta, 2001, Electronic communication of mathematics and the interaction of computer algebra systems and proof assistants, Journal of Symbolic Computation, 32, 3, 10.1006/jsco.2001.0455 Botana, 2003, A software tool for the investigation of plane loci, Mathematics and Computers in Simulation, 61, 139, 10.1016/S0378-4754(02)00173-8 Schauenburg, 2007, A Gröbner-based treatment of elimination theory for affine varieties, Journal of Symbolic Computation, 42, 859, 10.1016/j.jsc.2007.06.003 Recio, 2012, An introduction to automated discovery in geometry through symbolic computation, vol. 1, 257 Weispfenning, 1992, Comprehensive Gröbner bases, Journal of Symbolic Computation, 14, 1, 10.1016/0747-7171(92)90023-W Suzuki, 2003, An alternative approach to comprehensive Gröbner bases, Journal of Symbolic Computation, 36, 649, 10.1016/S0747-7171(03)00098-1 Montes, 2002, A new algorithm for discussing Gröbner basis with parameters, Journal of Symbolic Computation, 33, 183, 10.1006/jsco.2001.0504 Lazard, 2007, Solving parametric polynomial systems, Journal of Symbolic Computation, 42, 636, 10.1016/j.jsc.2007.01.007 Kapur, 2010, A new algorithm for computing comprehensive Gröbner systems, 29 Chen, 2006, Proving geometric theorems by partitioned–parametric Gröbner bases, vol. 3763, 34 Montes, 2007, Automatic discovery of geometry theorems using minimal canonical comprehensive Gröbner systems, vol. 4689, 113 Moreno Maza, 2012, On solving parametric polynomial systems, Mathematics in Computer Science, 6, 457, 10.1007/s11786-012-0136-3 Suzuki Botana, 2004, Automatic determination of envelopes and other derived curves within a graphic environment, Mathematics and Computers in Simulation, 67, 3, 10.1016/j.matcom.2004.05.004 Suzuki, 2006, A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases, 326