Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements

Medical Image Analysis - Tập 18 - Trang 487-499 - 2014
C. Chen1, W. Xie1, J. Franke2, P.A. Grutzner2, L.-P. Nolte1, G. Zheng1
1Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland
2BG Trauma Centre Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Str. 13, D-67071 Ludwigshafen, Germany

Tài liệu tham khảo

Baka, 2011, 2d–3d Shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models, Med. Image Anal., 15, 840, 10.1016/j.media.2011.04.001 Behiels, G., Vandermeulen, D., Maes, F., Suetens, P., Dewaele, P., 1999. Active shape model-based segmentation of digital X-ray images. In: MICCAI, pp. 128–137. Bergtholdt, 2010, A study of parts-based object class detection using complete graphs, Int. J. Comput. Vis., 87, 93, 10.1007/s11263-009-0209-1 Breiman, L., 2001. Random forests. In: Machine Learning, pp. 5–32. Candes, 2006, Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inform. Theory, 52, 5406, 10.1109/TIT.2006.885507 Chen, Y., Ee, X., Leow, W.K., Howe, T.S., 2005. Automatic extraction of femur contours from hip X-ray images. In: Proceedings of the ICCV Workshop on Computer Vision for Biomedical Image Applications, pp. 200–209. Chen, 2011, 3d human pose recovery from image by efficient visual feature selection, Comput. Vis. Image Understand., 115, 290, 10.1016/j.cviu.2010.11.007 Chen, C., Xie, W., Franke, J., Grutzner, P.A., Nolte, L.P., Zheng, G., 2013. Fully automatic X-ray image segmentation via joint estimation of image displacements. In: MICCAI. Cootes, 1992, Active shape models – smart snakes, 266 Cootes, 1997, A mixture model for representing shape variation, 110 Criminisi, A., Shotton, J., Robertson, D.P., Konukoglu, E., 2010. Regression forests for efficient anatomy detection and localization in ct studies. In: MCV, pp. 106–117. Cristinacce, 2008, Automatic feature localisation with constrained local models, Pattern Recog., 41, 3054, 10.1016/j.patcog.2008.01.024 Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: In CVPR, pp. 886–893. Davies, 2002 Dong, X., Zheng, G., 2008. Automatic extraction of proximal femur contours from calibrated X-ray images using 3d statistical models. In: MIAR, pp. 421–429. Dong, 2009, Automatic extraction of proximal femur contours from calibrated X-ray images using 3d statistical models: an in vitro study, Int. J. Med. Robot. Comput. Assis. Surg., 5, 213, 10.1002/rcs.253 Donner, 2010, Generalized sparse MRF appearance models, Image Vision Comput., 28, 1031, 10.1016/j.imavis.2009.07.010 Donner, R., Menze, B.H., Bischof, H., Langs, G., 2013. Global localization of 3d anatomical structures by pre-filtered hough forests and discrete optimization. Med. Image Anal., doi:http://dx.doi.org/10.1016/j.media.2013.02.004. Donoho, D.L., 2004. For Most Large Underdetermined Systems of Equations, The Minimal l1-norm Near-Solution Approximates the Sparsest Near-Solution. Technical Report. Comm. Pure Appl. Math. Etyngier, P., Ségonne, F., Keriven, R., 2007. Shape priors using manifold learning techniques. In: 11th IEEE International Conference on Computer Vision. Rio de Janeiro. Gall, 2009, Class-specific Hough forests for object detection, 1022 Gamage, 2010, Segmentation of radiographic images under topological constraints: application to the femur, Int. J. Comput. Assis. Radiol. Surg., 5, 425, 10.1007/s11548-009-0399-6 Gottschling, 2005, Intraoperative, fluoroscopy-based planning for complex osteotomies of the proximal femur, Int. J. Med. Robot. Comput. Assis. Surg., 1, 33, 10.1002/rcs.29 Kim, 2007, An interior-point method for large-scale l1-regularized logistic regression, J. Mach. Learn. Res., 2007 Kokiopoulou, 2011, Trace optimization and eigenproblems in dimension reduction methods, Numer. Lin. Algeb. Appl., 18, 565, 10.1002/nla.743 Lindner, C., Thiagarajah, S., Wilkinson, J.M., Wallis, G.A., Cootes, T.F., 2012. Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: MICCAI, vol. 3, pp. 353–360. Lindner, 2013, Fully automatic segmentation of the proximal femur using random forest regression voting, IEEE Trans. Med. Imag., 32, 1462, 10.1109/TMI.2013.2258030 Pauly, O., Glocker, B., Criminisi, A., Mateus, D., Möller, A.M., Nekolla, S., Navab, N., 2011. Fast multiple organ detection and localization in whole-body mr dixon sequences, In: Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. Part III. Springer-Verlag, Berlin, Heidelberg, pp. 239–247. Pilgram, 2008, Proximal femur segmentation in conventional pelvic X-ray, Med. Phys., 35, 2463, 10.1118/1.2919096 Schmidt, 2007, Spine detection and labeling using a parts-based graphical model, vol. 4584, 122 Sjostrand, 2007, Sparse decomposition and modeling of anatomical shape variation, IEEE Trans. Med. Imag., 26, 1625, 10.1109/TMI.2007.898808 Smith, 2009, A hierarchical method based on active shape models and directed hough transform for segmentation of noisy biomedical images; application in segmentation of pelvic X-ray images, BMC Med. Inform. Dec. Mak., 9, 1 Styner, 2003, Evaluation of 3d correspondence methods for model building, vol. 2732, 63 Vercauteren, 2009, Diffeomorphic demons: efficient non-parametric image registration, NeuroImage, 45, S61, 10.1016/j.neuroimage.2008.10.040 Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Sato, Y., 2009. Automated segmentation of the femur and pelvis from 3d ct data of diseased hip using hierarchical statistical shape model of joint structure. In: MICCAI, vol. 1. pp. 811–818. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S., 2011a. Sparse shape composition: a new framework for shape prior modeling. In: CVPR, pp. 1025–1032. Zhang, W., Yan, P., Li, X., 2011b. Estimating patient-specific shape prior for medical image segmentation. In: ISBI, pp. 1451–1454. Zhang, 2012, Deformable segmentation via sparse representation and dictionary learning, Med. Image Anal., 16, 1385, 10.1016/j.media.2012.07.007 Zheng, G., 2013. Expectation conditional maximization-based deformable shape registration. In: CAIP, vol. 1, pp. 548–555. Zheng, 2007, Unsupervised reconstruction of a patient-specific surface model of a proximal femur from calibrated fluoroscopic images, vol. 4791, 834 Zheng, 2008, Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features, IEEE Trans. Med. Imag., 27, 1668, 10.1109/TMI.2008.2004421 Zheng, 2009, A 2d/3d correspondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated X-ray images, Med. Image Anal., 13, 883, 10.1016/j.media.2008.12.003 Zheng, Y., Georgescu, B., Comaniciu, D., 2009b. Marginal space learning for efficient detection of 2d/3d anatomical structures in medical images. In: IPMI, pp. 411–422. Zhou, S.K., Comaniciu, D., 2007. Shape regression machine. In: IPMI, pp. 13–25.