Automatic Generation of Cognitive Theories using Genetic Programming

Minds and Machines - Tập 17 - Trang 287-309 - 2007
Enrique Frias-Martinez1, Fernand Gobet2
1Department of Information Systems and Computing, Brunel University, Uxbridge, UK
2Centre for Cognition and Neuroimaging, Brunel University, Uxbridge, UK

Tóm tắt

Cognitive neuroscience is the branch of neuroscience that studies the neural mechanisms underpinning cognition and develops theories explaining them. Within cognitive neuroscience, computational neuroscience focuses on modeling behavior, using theories expressed as computer programs. Up to now, computational theories have been formulated by neuroscientists. In this paper, we present a new approach to theory development in neuroscience: the automatic generation and testing of cognitive theories using genetic programming (GP). Our approach evolves from experimental data cognitive theories that explain “the mental program” that subjects use to solve a specific task. As an example, we have focused on a typical neuroscience experiment, the delayed-match-to-sample (DMTS) task. The main goal of our approach is to develop a tool that neuroscientists can use to develop better cognitive theories.

Tài liệu tham khảo

Anderson, J. R. (1983). Retrieval of long-term memory information. Science, 220, 25–30. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. L. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–1060. Angeline, P. J., & Pollack, J. B. (1992). The evolutionary induction of subroutines. In Proceedings of the fourteenth annual conference of the cognitive science society. Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming: an introduction on the automatic evolution of computer programs. New York: PWS. Bollobas, B., & Riordan, O. (1998). On some conjectures of Graffiti. Discrete Mathematics, 179, 223–230. Burke, E. K., Gustafson, S., & Kendall, G. (2004). Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation, 8, 47–62. Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913–920. Churchland, P. S., & Sejnowski, T. J. (1992). The Computational Brain. Cambridge, MA: MIT Press. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental capacity. Behavioral and Brain Sciences, 24, 87–114. Dastidar, T. R., Chakrabarti, P. P., & Ray, P. (2005). A Synthesis system for analog circuits based on evolutionary search and topological reuse. IEEE Transactions on Evolutionary Computation, 9(2), 211–224. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. New York: MIT Press. Eichenbaum, H. (2002). The cognitive neuroscience of memory. Oxford: University Press. Elliott, R., & Dollan, R. J. (1999). Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. The Journal of Neuroscience, 19, 5066–5073. Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness. A connectionist perspective on development. Cambridge, MA: MIT Press. Gazzaniga, M. S. (1999). Conversations in the Cognitive Neurosciences. New York: MIT Press. Gobet, F. (2001). Is experts’ knowledge modular? In Proceedings of the 23rd meeting of the cognitive science society (pp. 336–431). Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four …or is it two?. Memory, 12, 732–747. Gobet, F., & Parker, A. (2005). Evolving structure–function mappings in cognitive neuroscience using genetic programming. Swiss Journal of Psychology, 64, 231–239. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. NeuroImage, 8, 409–425. Habeck, C., Hilton, J., Zarahn, E., Flynn, J., Moeller, J. R., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of non-verbal memory. NeuroImage, 20, 1723– 1733. Holland, J. H. (1992). Adaptation in natural and artificial systems. Cambridge: MIT Press. Jackson, D. (2005). Evolution of processor microcode. IEEE Transactions on Evolutionary Computation, 9(1), 44–59. Kentala, E., Laurikkala, J., Pyykko, I., & Juhola, M. (1999). Discovering diagnostic rules from a neurologic database with genetic algorithms. Annals of Otology, Rhinology and Laryngology, 108, 948–954. Kosslyn, S. M., & Koenig, O. (1992). Wet mind. New York: Free Press. Koza, J. (1992). Genetic Programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press. Koza, J. (1994). Genetic Programming II. Cambridge, MA: MIT Press. Langdon, W. B., & Poli, R. (1998). Fitness causes bloat: Mutation. In Proceedings of the 1st European workshop on genetic programming (pp. 222–230). Langley, P., Simon, H., Bradsaw, G. L., & Zytkow, J. M. (1996). Scientific discovery. New York: MIT Press. Lones, M. A., & Tyrrell, A. M. (2002). Crossover and bloat in the functionality model of genetic programming. In Proceedings of 2002 congress on evolutionary computation (pp. 986–991). Mecklinger, A., & Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Research, 4(3), 211–224. Mitchell, M. (1996). An introduction to genetic algorithms. New York: MIT Press. Muni, D. P., Pal, N. R., & Das, J. (2004). A novel approach to design classifiers using genetic programming. IEEE Transactions on Evolutionary Computation, 8(2), 183–195. O’Reilly, R. C. (1998). Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences, 2, 455–462. Pattichis, C. S., & Schizas, C. N. (1996). Genetics-based machine learning for the assessment of certain neuromuscular disorders. IEEE Transactions on Neural Networks, 7, 427–439. Shallice, T. (1990). From neuropsychology to mental structure. Cambridge, UK: Cambridge University Press. Simon, H. A. (1996). The Sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press. Simon, H. A. (1977). Models of discovery and other topics in the methods of science. Dordrecht: Reidel. Sonka, M., Tadikonda, S. K., & Collins, S. M. (1996). Knowledge-based interpretation of MR brain images. IEEE Transactions on Medical Imaging, 15, 443–452. Valdes-Perez, R. E. (1999). Principles of human–computer collaboration for knowledge discovery in science. Artificial Intelligence, 107, 335–346. Whigham, P. A., & Crapper, P. F. (2001). Modeling rainfall runoff using genetic programming. Mathematical and Computer Modelling, 33, 707–721. de Zubicaray, G. I., McMahon, K., Wilson, S. J., & Muthiah, S. (2001). Brain activity during the encoding, retention and retrieval of stimulus representations. Learning & Memory, 8(5), 243–251.