Automatic Detection of COVID-19 Based on Short-Duration Acoustic Smartphone Speech Analysis

Journal of Healthcare Informatics Research - Tập 5 Số 2 - Trang 201-217 - 2021
Brian Stasak1, Zhaocheng Huang1, Sabah Razavi2, Dale Joachim2, Julien Epps1
1School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW, Australia
2Sonde Health, Boston, MA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

John Hopkins University and Medicine (2020) COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). https://coronavirus.jhu.edu/map.html. Accessed September 2020

World Health Organization (WHO) (2020) Coronavirus Symptoms. https://www.who.int/health-topics/coronavirus#tab=tab_3. Accessed September 2020

Goldsobel AB, Chipps BE (2010) Cough in the pediatric population. J Pediatr 156(3):352–358

Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K, et al. (2020) AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app, Informatic in medicine unlocked

Batra S, Baker RA, Wang T, Forma F, DiBiasi F, Peters-Strickland T (2017) Digital health technology for use in patients with serious mental illness: a systematic review of the literature. Med Devices 10:237–251

Bauer M, Glenn T, Geddes J, Gitlin M, Grof P, Kessing LV et al (2020) Smartphones in mental health: a critical review of background issues, current status and future concerns. Int J Bipolar Disord 8(2):1–19

Majumder S, Deen MJ (2019) Smartphone sensors for health monitoring and diagnosis. Sensors 19(9):1–45

Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Making 12(67):1–31

Tabatabaei SAH, Fischer P, Schneider H, Koehler U, Gross V, Sohrabi K (2020) Methods for adventitious respiratory sound analyzing applications based on smartphones: a survey. IEEE reviews in biomedical engineering.

Yang X, Kovarik CL (2019) A systematic review of mobile health interventions in China: identifying gaps in care. J Telemed Telecare 0(0):1–20

Petrizzo D, Popolo PS (2020) Smartphone use in clinical voice recording and acoustic analysis: a literature review. J Voice 28;S0892–1997(19)30284-X. https://doi.org/10.1016/j.jvoice.2019.10.006

Merkus J, Hubers F, Cucchiarini C, Strik H (2019) Digital eavesdropper – acoustic speech characteristics as markers of exacerbations in COPD patients. In: Proc. Lang. Res. and Eval. Conf. (LREC), pp. 78–86

Nathan V, Rahman M, Vatanparvar K, Nemati E, Blackstock E, Kuang J (2019) Extraction of voice parameters from continuous running speech for pulmonary disease monitoring. In: Proc. IEEE Intern. Conf. on Bioinformatics and Biomedicine (BIBM), pp. 859–864

Song I (2015) Diagnosis of pneumonia from sounds collecte using low cost cell phones. In: Proc. Intern. Joint Conf. on Neural Networks (IJCNN), Killarney - Ireland, pp 1–8

Rudraraju G, Palreddy S, Mamidgi B, Sripada NR, Sai YP, Vodnala NK, Haranath SP (2020) Cough sound analysis and objective correlation with spirometry and clinical diagnosis. Informatics Med Unlocked 19:1–11

Deshpande G, Schuller BW (2020) An overview on audio, signal, speech, & language processing for COVID-19. arXiv:2005.08579v1, pp. 1–5

Faezipour M, Abuzneid A (2020) Smartphone-based self-testing of COVID-19 using breathing sounds. Telemed J E Health 26(10):1202–1205. https://doi.org/10.1089/tmj.2020.0114

Han J, Qian K, Song M, Yang Z, Ren Z, Liu S, et al (2020) An early study on intelligent analysis of speech under COVID-19: severity, sleep quality, fatigue, and anxiety. arXiv:2005.00096v2, pp. 1–5

Sharma N, Krishnan P, Kumar R, Ramoji S, Chetupalli SR, Nirmala R, et al. (2020) Coswara – a database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv:2005.10548v1, pp. 1–5

Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, Xia T, Cicuta P, Mascolo C (2020) Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. In: Proc. KDD ‘20 (Health Day), San Diego, CA – USA

Lechien JR, Chiesa-Estomba CM, Cabaraux P, Mat Q, Huet K, Harmegnies B et al (2020) Features of mild-to-moderate COVID-19 patients with dysphonia. J Voice

Quatieri TF, Talkar T, Palmer JS (2020) A framework for biomarkers of COVID-19 based on coordination of speech-production subsystems. IEEE Open J Eng Med Biol 1:203–206

Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, Ganesh S, Varsavsky T, Cardoso MJ, el-Sayed Moustafa JS, Visconti A, Hysi P, Bowyer RCE, Mangino M, Falchi M, Wolf J, Ourselin S, Chan AT, Steves CJ, Spector TD (2020) Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med 26:1037–1040

Salathé M, Althaus C, Neher R, Stringhini S, Hodcroft E, Fellay J et al (2020) COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Med Wkly 150:1–3

Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC (2020) Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA 324(8):782–793

Goodridge D, Marciniuk D (2016) Rural and remote care: overcoming the challenges of distance. Chron Respir Dis 13(2):192–203

Vo A, Brooks GB, Farr R, Raimer B (2011) Benefits of telemedicine in remote communities & use of mobile and wireless platforms in healthcare. UTMB Telemedicine and Center for Telehealth Research and Policy, pp. 1–9

Subirana B, Hueto F, Rajasekara P, Laguarta J, Puig S, Malvehy J, et al (2020) Hi Sigma, do I have the coronavirus? MIT Auto-ID Lab Report, pp. 1–13

Carnagie Mellow University (CMU), COVID voice detector, Pittsburgh, PA – USA, https://cvd.lti.cmu.edu. Accessed September 2020

University of Cambridge (UC), COVID-19 sounds app, Cambridge – UK, https://www.covid-19-sounds.org/en/. Accessed September 2020

Sonde Health (SH), Sonde One, Boston, MA – USA, https://www.sondehealth.com/sondeone-page. Accessed September 2020

Degottex G, Kane J, Drugman T, Raitio T, Scherer S (2014) COVAREP – a cooperative voice analysis repository for speech technologies. In: Proc. of Acoustics, Speech and Signal Processing (ICASSP), pp 960–964

Borsky M, Mehta DD, Van Stan J, Gu∂nason J (2017) Modal and nonmodal voice quality classification using acoustic and electroglottographic features. IEEE/ACM Trans Audio Speech Lang Process 25(12):2281–2291

Villegas J, Markov K, Perkins J, Lee SJ (2020) Prediction of creaky speech by recurrent neural networks using psychoacoustic roughness. IEEE J Select Top Signal Proc 14(2):355–366

Szklanny K, Gubrynowicz R, Tylki-Szymansak A (2018) Voice alterations in patients with Morquio A syndrome. J Appl Genet 59:73–80

Amara F, Fezari M (2015) Laryngeal pathologies analysis using glottal source features. In: Proc. Intern. Conf. on Automatic Control, Telecomm. and Signals (ICATS15), Annaba – Algeria, pp. 1–6

Szklanny K, Gubrynowicz R, Iwanicka-Pronicka K, Tylki-Szymańska A (2016) Analysis of voice quality in patients with late-onset Pompe disease. Orphanet J Rare Dis 11(1):1–9

Stasak B, Epps J, Goecke R (2017) Elicitation design for acoustic depression classification: an investigation of articulation effort, linguistic complexity, and word affect”, In: Proc. INTERSPEECH, Stockholm – Sweden, pp. 834–838

Vâzquez-Romero A, Gallardo-Antolin A (2020) Automatic detection of depression in speech using ensemble convolutional neural networks. Entropy 22(688):1–17

Cummins N, Schmitt M, Amiriparian S, Krajewski J, Schuller B (2017) You sound ill, take the day off”: automatic recognition of speech affected by upper respiratory tract infection”, 2017 38th Ann. Intern. Conf. of the IEEE Eng. in Med. And Biology Society (EMBC), pp. 3806–3809

Pozo F, Murillo RB, Hernández-Gómez JL, López-Gonzalo E, Alcázar-Ramírez J, Toledano DT (2009) Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques. EURASIP J Adv Signal Proc 2009:1–11. https://doi.org/10.1155/2009/982531

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall, Boca Raton

Yang L, Jiang D, He L, Pei E, Oveneke MC, Sahli H (2016) Decision tree based depression classification from audio video and language information. In; Proc. 6th Int. Work. Audio/Visual Emot. Chall. (AVEC ‘16), pp. 89–96

Yüncü E, Hacihabiboglu H, Bozsahin C (2014) Automatic speech emotion recognition using auditory models with binary decision tree and svm. In: Proceedings of the 2014 22nd Intern. Conf. on Pattern Recognition, Stockholm - Sweden, 2014, pp. 773–778