Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods
Tài liệu tham khảo
Chanson, 1989, Heart failure responding to octreotide in patient with acromegaly, Lancet, 1, 1263, 10.1016/S0140-6736(89)92355-6
Chollet
Esteva, 2017, Dermatologist-level classification of skin cancer with deep neural networks, Nature, 542, 115, 10.1038/nature21056
Gencturk, 2013, 817
Gulshan, 2016, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA, 316, 2402, 10.1001/jama.2016.17216
Hamet, 2017, Artificial intelligence in medicine, Metabolism, 69S, S36, 10.1016/j.metabol.2017.01.011
Kanakasabapathy, 2017, An automated smartphone-based diagnostic assay for point-of-care semen analysis, Sci. Transl. Med., 9, 10.1126/scitranslmed.aai7863
Katznelson, 2014, Acromegaly: an endocrine society clinical practice guideline, J. Clin. Endocrinol. Metab., 99, 3933, 10.1210/jc.2014-2700
Kruszka, 2017, 22q11.2 deletion syndrome in diverse populations, Am. J. Med. Genet. A, 173, 879, 10.1002/ajmg.a.38199
Laurence, 2014, Acromegaly: an endocrine society clinical practice guideline, J. Clin. Endocrinol. Metab., 99
Learned-Miller, 2006, Detecting acromegaly: screening for disease with a morphable model, Med. Image Comput. Comput. Assist. Interv., 9, 495
Melmed, 2006, Medical progress: acromegaly, N. Engl. J. Med., 355, 2558, 10.1056/NEJMra062453
Melmed, 1990, N. Engl. J. Med., 322, 966, 10.1056/NEJM199004053221405
Miller, 2011, Early diagnosis of acromegaly: computers vs clinicians, Clin. Endocrinol., 75, 226, 10.1111/j.1365-2265.2011.04020.x
Obermeyer, 2016, Predicting the future - big data, machine learning, and clinical medicine, N. Engl. J. Med., 375, 1216, 10.1056/NEJMp1606181
Reddy, 2010, Acromegaly, BMJ, 341, c4189, 10.1136/bmj.c4189
Ribeiro-Oliveira, 2012, The changing face of acromegaly—advances in diagnosis and treatment, Nat. Rev. Endocrinol., 8, 605, 10.1038/nrendo.2012.101
Sagonas
Schneider, 2008, High prevalence of biochemical acromegaly in primary care patients with elevated IGF-1 levels, Clin. Endocrinol., 69, 432, 10.1111/j.1365-2265.2008.03221.x
Schneider, 2011, A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification, J. Clin. Endocrinol. Metab., 96, 2074, 10.1210/jc.2011-0237
Seeliger, 2017, Convolutional neural network-based encoding and decoding of visual object recognition in space and time, NeuroImage
Tikoo, 2016, Detection, segmentation and recognition of face and its features using neural network, J. Biosens. Bioelectron., 7
Utiger, 2000, Treatment of acromegaly, N. Engl. J. Med., 342, 1210, 10.1056/NEJM200004203421611
Xie