Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexandre, P., Hamilton, D., Barfod, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A8. https://doi.org/10.1016/j.gca.2006.06.1574
Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022
Bai, X. J., Wang, M., Lu, K. H., et al., 2011. Direct Dating of Cassiterite by 40Ar/39Ar Progressive Crushing. Chinese Science Bulletin, 56(23): 1899–1904 (in Chinese)
Barfod, D., Alexandre, P., Hamilton, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A34. https://doi.org/10.1016/j.gca.2006.06.177
Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427–433. https://doi.org/10.1016/0012-821x(70)90146-9
Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., et al., 1981. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey Triga Reactor. Professional Paper 1176. U. S. Geol. Surv., Washington
Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044
Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8
Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4
Lederer, C. M., Shirley, V. S. E., 1978. Table of Isotopes, 7th Ed. Wiley, New York
Lee, J.-Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563
Liu, J., Wu, G., Qiu, H. N., et al., 2015. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province, China. Geological Journal, 50(5): 592–606. https://doi.org/10.1002/gj.2577
Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002643
Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042
McDougall, I., Brown, F. H., Fleagle, J. G., 2005. Stratigraphic Placement and Age of Modern Humans from Kibish, Ethiopia. Nature, 433(7027): 733–736. https://doi.org/10.1038/nature03258
McDougall, I., Harrison, T. M., 1999. Geochronology and Termochronology by the 40Ar/39Ar Method (2nd Edition). Oxford University Press, New York
Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852–2857. https://doi.org/10.1029/jz071i011p02852
Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781–790. https://doi.org/10.1016/0016-7037(68)90012-4
Nier, A. O., 1950. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. Physical Review, 77(6): 789–793. https://doi.org/10.1103/physrev.77.789
Pfänder, J. A., Sperner, B., Ratschbacher, L., et al., 2014. High-Resolution 40Ar/39Ar Dating Using a Mechanical Sample Transfer System Combined with a High-Temperature Cell for Step Heating Experiments and a Multicollector ARGUS Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 15(6): 2713–2726. https://doi.org/10.1002/2014gc005289
Phillips, D., Miller, J. M., 2006. 40Ar/39Ar Dating of Mica-Bearing Pyrite from Thermally Overprinted Archean Gold Deposits. Geology, 34(5): 397–400. https://doi.org/10.1130/g22298.1
Qiu, H. N., 1996. 40Ar-39Ar Dating of the Quartz Samples from Two Mineral Deposits in Western Yunnan (SW China) by Crushing in Vacuum. Chemical Geology, 127(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(95)00093-3
Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ARGUSvi Ms with Home-Made Apparatus. Geochimica, 44(5): 477–484 (in Chinese with English Abstract)
Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028
Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030
Qiu, H. N., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451–454. https://doi.org/10.1130/g31885.1
Qiu, H. N., Zhu, B. Q., Sun, D. Z., 2002. Age Significance Interpreted from 40Ar-39Ar Dating of Quartz Samples from the Dongchuan Copper Deposits, Yunnan, SW China, by Crushing and Heating. Geochemical Journal, 36(5): 475–491. https://doi.org/10.2343/geochemj.36.475
Renne, P. R., Cassata, W. S., Morgan, L. E., 2009a. The Isotopic Composition of Atmospheric Argon and 40Ar/39Ar Geochronology: Time for a Change? Quaternary Geochronology, 4(4): 288–298. https://doi.org/10.1016/j.quageo.2009.02.015
Renne, P. R., Deino, A. L., Hames, W. E., et al., 2009b. Data Reporting Norms for 40Ar/39Ar Geochronology. Quaternary Geochronology, 4(5): 346–352. https://doi.org/10.1016/j.quageo.2009.06.005
Sigurgeirsson, T., 1962. Age Dating of Young Basalts with the Potassium-Argon Method (in Icelandic). Unpublished Report Physics Laboratory. University of Iceland, Iceland
Turner, G., 1971. Argon 40-Argon 39Dating: The Optimization of Irradiation Parameters. Earth and Planetary Science Letters, 10(2): 227–234. https://doi.org/10.1016/0012-821x(71)90010-0
Turner, G., Bannon, M. P., 1992. Argon Isotope Geochemistry of Inclusion Fluids from Granite-Associated Mineral Veins in Southwest and Northeast England. Geochimica et Cosmochimica Acta, 56(1): 227–243. https://doi.org/10.1016/0016-7037(92)90128-6
Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-z
Turrin, B. D., Swisher, C. C. III, Deino, A. L., 2010. Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2009gc003013
Valkiers, S., Vendelbo, D., Berglund, M., et al., 2010. Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon. International Journal of Mass Spectrometry, 291(1/2): 41–47. https://doi.org/10.1016/j.ijms.2010.01.004
Wang, M., Bai, X. J., Hu, R. G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049–1060 (in Chinese with English Abstract)
Wang, M., Bai, X. J., Yun, J. B., et al., 2016. 40Ar/39Ar Dating of Mineralization of Shizhuyuan Polymetallic Deposit. Geochimica, 45(1): 41–51 (in Chinese with English Abstract)