Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus

Xiao Bai1, Hua‐Ning Qiu2,1, Wengui Liu3, Lianfu Mei1
1Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan, China
2State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
3State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexandre, P., Hamilton, D., Barfod, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A8. https://doi.org/10.1016/j.gca.2006.06.1574

Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022

Bai, X. J., Wang, M., Lu, K. H., et al., 2011. Direct Dating of Cassiterite by 40Ar/39Ar Progressive Crushing. Chinese Science Bulletin, 56(23): 1899–1904 (in Chinese)

Barfod, D., Alexandre, P., Hamilton, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A34. https://doi.org/10.1016/j.gca.2006.06.177

Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427–433. https://doi.org/10.1016/0012-821x(70)90146-9

Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., et al., 1981. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey Triga Reactor. Professional Paper 1176. U. S. Geol. Surv., Washington

Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044

Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8

Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4

Lederer, C. M., Shirley, V. S. E., 1978. Table of Isotopes, 7th Ed. Wiley, New York

Lee, J.-Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563

Liu, J., Wu, G., Qiu, H. N., et al., 2015. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province, China. Geological Journal, 50(5): 592–606. https://doi.org/10.1002/gj.2577

Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002643

Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042

McDougall, I., Brown, F. H., Fleagle, J. G., 2005. Stratigraphic Placement and Age of Modern Humans from Kibish, Ethiopia. Nature, 433(7027): 733–736. https://doi.org/10.1038/nature03258

McDougall, I., Harrison, T. M., 1999. Geochronology and Termochronology by the 40Ar/39Ar Method (2nd Edition). Oxford University Press, New York

Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852–2857. https://doi.org/10.1029/jz071i011p02852

Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781–790. https://doi.org/10.1016/0016-7037(68)90012-4

Nier, A. O., 1950. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. Physical Review, 77(6): 789–793. https://doi.org/10.1103/physrev.77.789

Pfänder, J. A., Sperner, B., Ratschbacher, L., et al., 2014. High-Resolution 40Ar/39Ar Dating Using a Mechanical Sample Transfer System Combined with a High-Temperature Cell for Step Heating Experiments and a Multicollector ARGUS Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 15(6): 2713–2726. https://doi.org/10.1002/2014gc005289

Phillips, D., Miller, J. M., 2006. 40Ar/39Ar Dating of Mica-Bearing Pyrite from Thermally Overprinted Archean Gold Deposits. Geology, 34(5): 397–400. https://doi.org/10.1130/g22298.1

Qiu, H. N., 1996. 40Ar-39Ar Dating of the Quartz Samples from Two Mineral Deposits in Western Yunnan (SW China) by Crushing in Vacuum. Chemical Geology, 127(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(95)00093-3

Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ARGUSvi Ms with Home-Made Apparatus. Geochimica, 44(5): 477–484 (in Chinese with English Abstract)

Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028

Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030

Qiu, H. N., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451–454. https://doi.org/10.1130/g31885.1

Qiu, H. N., Zhu, B. Q., Sun, D. Z., 2002. Age Significance Interpreted from 40Ar-39Ar Dating of Quartz Samples from the Dongchuan Copper Deposits, Yunnan, SW China, by Crushing and Heating. Geochemical Journal, 36(5): 475–491. https://doi.org/10.2343/geochemj.36.475

Renne, P. R., Cassata, W. S., Morgan, L. E., 2009a. The Isotopic Composition of Atmospheric Argon and 40Ar/39Ar Geochronology: Time for a Change? Quaternary Geochronology, 4(4): 288–298. https://doi.org/10.1016/j.quageo.2009.02.015

Renne, P. R., Deino, A. L., Hames, W. E., et al., 2009b. Data Reporting Norms for 40Ar/39Ar Geochronology. Quaternary Geochronology, 4(5): 346–352. https://doi.org/10.1016/j.quageo.2009.06.005

Sigurgeirsson, T., 1962. Age Dating of Young Basalts with the Potassium-Argon Method (in Icelandic). Unpublished Report Physics Laboratory. University of Iceland, Iceland

Turner, G., 1971. Argon 40-Argon 39Dating: The Optimization of Irradiation Parameters. Earth and Planetary Science Letters, 10(2): 227–234. https://doi.org/10.1016/0012-821x(71)90010-0

Turner, G., Bannon, M. P., 1992. Argon Isotope Geochemistry of Inclusion Fluids from Granite-Associated Mineral Veins in Southwest and Northeast England. Geochimica et Cosmochimica Acta, 56(1): 227–243. https://doi.org/10.1016/0016-7037(92)90128-6

Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-z

Turrin, B. D., Swisher, C. C. III, Deino, A. L., 2010. Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2009gc003013

Valkiers, S., Vendelbo, D., Berglund, M., et al., 2010. Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon. International Journal of Mass Spectrometry, 291(1/2): 41–47. https://doi.org/10.1016/j.ijms.2010.01.004

Wang, M., Bai, X. J., Hu, R. G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049–1060 (in Chinese with English Abstract)

Wang, M., Bai, X. J., Yun, J. B., et al., 2016. 40Ar/39Ar Dating of Mineralization of Shizhuyuan Polymetallic Deposit. Geochimica, 45(1): 41–51 (in Chinese with English Abstract)