Automated segmentation of acute leukemia using blood and bone marrow smear images: a systematic review

Rohini Raina1, Naveen Kumar Gondhi1, Abhishek Gupta2,3
1School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Jammu, India
2Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
3Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Chandigarh, India

Tóm tắt

Acute leukemia is a proliferation of white blood cells that originates in the bone marrow and impinges on the working of the lymphatic system. Due to the abrupt and aggressive nature of spreading, it requires prompt medical attention. The procedure adopted by hematologists for evaluating morphological features and counting the cells is quite time-consuming, cumbersome, and error-prone. Thus, automatic methods are recommended to overcome the limitations of manual segmentation. The motive of this systematic review is to investigate the various automatic segmentation techniques of acute leukemia using blood and bone marrow smear images. The guidelines of PRISMA have been adopted for systematic review. For the identification of the papers, three online databases are used, namely PubMed, Science Direct, and Google Scholar. A query has been used to find the relevant research article. Inclusion and exclusion criteria are used to scrutinize the papers, and four research questions have been framed to explore the literature to investigate further. In the preview of four different questions, the various methods have been compared based on accuracy, and the various challenges have been highlighted with respect to the methods and distinct datasets of blood and bone marrow smear images. This systematic review summarizes the various automated segmentation techniques under the pretext of framed research questions based on the PRISMA Model. The different types of datasets, performance evaluation parameters, and various obstacles with future scope have also been discussed.

Từ khóa


Tài liệu tham khảo

Vogado L, Veras R, Aires K, Araujo F, Silva R, Ponti M, Tavares J(2021) Diagnosis of leukaemia in blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors 21(9):2989. https://doi.org/10.3390/s21092989 Choi JW, Ku Y, Yoo BW, Kim JA, Lee DS, Chai YJ, Kong HJ, Kim HC (2017) White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PLoS One 12(12):e0189259 Bigorra L, Merino A, Alferez S, Rodellar J (2017) Feature analysis and automatic identification of leukemic lineage blast cells and reactive lymphoid cells from peripheral blood cell images. J Clin Lab Anal 31:e22024. https://doi.org/10.1002/jcla.22024 Andrade AR, Vogado LHS, Veras RMS, Silva RRV, Araujo FHD, Medeiros FNS (2019) Recent computational methods for white blood cell nuclei segmentation: A comparative study. Comput Methods Programs Biomed 173:1–14 Shaheen M, Khan R, Biswal R, Ullah M, Khan A, Uddin MI, Zareei M, A Waheed A (2021) Acute myeloid leukemia (AML) detection using AlexNet Model. Complexity 2021. Article ID 6658192, 8 pages. https://doi.org/10.1155/2021/6658192 Acevedo A, Alferez S, Merino A, Puigvi L, Rodellar J (2019) Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Programs Biomed 180:105020 Boldu L, Merino A, Alferez S, Molina A, Acevedo A, Rodellar J (2019) Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. J Clin Pathol 72(11):755–761 Moshavash Z, Danyali H, Helfroush MS (2018) An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. J Digit Imaging 31(5):702–717 Sipes R, Li D (2018) Using convolutional neural networks for automated fine grained image classification of Acute Lymphoblastic Leukemia. 157–161. https://doi.org/10.1109/ICCIA.2018.00036 Bibi N, Sikandar M, Ud Din I, Almogren A, Ali S (2020) IoMT-based automated detection and classification of leukemia using deep learning. J Healthc Eng 2020:6648574 Saba T (2020) Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J Infect Public Health 13(9):1274–1289 Dese K, Raj H, Ayana G, Yemane T, Adissu W, Krishnamoorthy J, Kwa T (2021) Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images. Clin Lymphoma Myeloma Leuk 21(11):e903–e914 Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A, Wang P (2021) Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review. Sci Program 2021:1–14 Jiang Z, Dong Z, Wang L, Jiang W (2021) Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model. Comput Intell Neurosci 2021:7529893 Raina R, Gondhi NK, Chaahat, Singh D, Kaur M, Lee H-N (2022) A systematic review on acute leukemia detection using deep learning techniques. Arch Comput Methods Eng 2022/09/13. https://doi.org/10.1007/s11831-022-09796-7 LaG Rosen (2022) Chronic lymphoblastic leukemia [Online]. Available: https://www.cancer.org/cancer/chronic-lymphocytic-leukemia.html Ladines-Castro W, Barragán-Ibañez G, Luna-Pérez M, Santoyo-Sánchez A, Collazo-Jaloma J, Mendoza-García E, Ramos-Peñafiel C (2016) Morphology of leukaemias. Revista Médica del Hospital General de México 79(2):107–113 Khan S, Sajjad M, Hussain T, Ullah A, Imran AS (2021) A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access 9:10657–10673 Mondal C, Hasan MK, Ahmad M, Awal MA, Jawad MT, Dutta A, Islam MR, Moni MA (2021) Ensemble of convolutional neural networks to diagnose acute lymphoblastic leukemia from microscopic images. Inform Med Unlocked 27. https://doi.org/10.1016/j.imu.2021.100794 R Moosavi Tayebi, Y Mu, T Dehkharghanian, C Ross, M Sur, R Foley, HR Tizhoosh, CJ Campbell (2021) Histogram of cell types: deep learning for automated bone marrow cytology. arXiv e-prints arXiv: 2107.02293 Angelakis A, Soulioti I (2021) Diagnosis of acute myeloid leukaemia using machine learning. arXiv preprint. https://doi.org/10.48550/arXiv.2108.07396 Genovese A, Hosseini MS, Piuri V, Plataniotis KN, Scotti F (2021) Histopathological transfer learning for acute lymphoblastic leukemia detection. 1–6. https://doi.org/10.1109/CIVEMSA52099.2021.9493677 Aftab MO, Javed Awan M, Khalid S, Javed R, Shabir H (2021) Executing spark BigDL for leukemia detection from microscopic images using transfer learning. 216–220. https://doi.org/10.1109/CAIDA51941.2021.9425264 Zhou M, Wu K, Yu L, Xu M, Yang J, Shen Q, Liu B, Shi L, Wu S, Dong B, Wang H, Yuan J, Shen S, Zhao L (2021) Development and Evaluation of a Leukemia Diagnosis System Using Deep Learning in Real Clinical Scenarios. Front Pediatr 9:693676 Khandekar R, Shastry P, Jaishankar S, Faust O, Sampathila N (2021) Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomed Signal Process Control 68:102690 Melfi Rose S, Merlin Sheeba J, Vijay Prabaharan R, Bhuvaneshwari M, SubhaHency Jose P (2021) Prognostication of acute lymphocytic leukemia (ALL) using capsule network algorithm. J Phys: Conference Series 1937(1):012021 FSK Sakthiraj (2021) “Autonomous leukemia detection scheme based on hybrid convolutional neural network model using learning Algorithm.” Wirel Personal Commun Matek C, Krappe S, Munzenmayer C, Haferlach T, Marr C (2021) Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood 138(20):1917–1927 Fu X, Fu M, Li Q, Peng X, Lu J, Fang F, Chen M (2020) Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence. Acta Cytol 64(6):588–596 Elhassan TAM, Rahim MSM, Swee TT, Hashim SZM, Aljurf M (2022) Feature Extraction of White Blood Cells Using CMYK-Moment Localization and Deep Learning in Acute Myeloid Leukemia Blood Smear Microscopic Images. IEEE Access 10:16577–16591 Ravikumar S (2016) Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine. Artif Cells Nanomed Biotechnol 44(3):985–989 Zolfaghari M, Sajedi H (2022) A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells. Multimed Tools Appl 1–31. https://doi.org/10.1007/s11042-022-12108-7 Su J, Liu S, Song J (2017) A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Methods Programs Biomed 152:115–123 Abhishek A, Jha RK, Sinha R, Jha K (2022) Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed Signal Process Control 72:103341 Rastogi P, Khanna K, Singh V (2022) LeuFeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Comput Biol Med 105236. https://doi.org/10.1007/s11042-022-12108-7 Chiarilli MG, DelliPizzi A, Mastrodicasa D, Febo MP, Cardinali B, Consorte B, Cifaratti A, Panara V, Caulo M, Cannataro G (2021) Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiol Med 126(2):264–276 Kumar P, Udwadia SM. Automatic detection of Acute Myeloid Leukemia from microscopic blood smear image. 1803–1807. https://doi.org/10.1109/ICACCI.2017.8126106 Loey M, Naman MR, Zayed HH (2020) A survey on blood image diseases detection using deep learning. Int J Serv Sci Manag Eng Technol 11(3):18–32 Sahlol AT, Kollmannsberger P, Ewees AA (2020) Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci Rep 10(1):2536 MD Khan, Misbahud, Naeem, Zerbab, Sajid, Zahra, Khan, Dilawar, Amjad, Muhammad, Zeb, Aurang, Anwar, Faheem, Akhtar, Mehran, Noreen, Sana (2020) “Insights into acute myeloid leukemia: critical analysis on its wide aspect,” Volume 3: 1–9 Fan H, Zhang F, Xi L, Li Z, Liu G, Xu Y (2019) LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. J Biophotonics 12(7):e201800488 Fakhouri HN, Al-Sharaeh SH (2018) A hybrid methodology for automation the diagnosis of leukemia based on quantitative and morphological feature analysis. Mod Appl Sci 12: 3. https://doi.org/10.5539/mas.v12n3p56 Ananthu K, Krishna Prasad P, Nagarajan S, Vimina E (2022) Acute Lymphoblastic Leukemia detection using transfer learning techniques. Intell Sustain Syst 679–692: Springer. https://doi.org/10.1007/978-981-16-2422-3_53 Rezayi S, Mohammadzadeh N, Bouraghi H, Saeedi S, Mohammadpour A (2021) “Timely diagnosis of acute lymphoblastic leukemia using artificial intelligence-oriented deep learning methods.” Comput Intell Neurosci. https://doi.org/10.1007/978-981-16-2422-3_53 Laosai J, Chamnongthai K (2018) Deep-learning-based Acute Leukemia classification using imaging flow cytometry and morphology. 427–430. https://doi.org/10.1109/ISPACS.2018.8923175 Raina R (2018) “Machine learning techniques in IoT”. Int J Sci Res Comput Sci Eng Inf Technol 1:117–121 Prasanna A, Saran S, Manoj N, Alagu S (2023) A deep learning framework for semantic segmentation of nucleus for acute lymphoblastic leukemia detection. 1–7. https://doi.org/10.1109/ICBSII58188.2023.10181067 Zhang C, Wu S, Lu Z, Shen Y, Wang J, Huang P, Lou J, Liu C, Xing L, Zhang J, Xue J, Li D (2020) Hybrid adversarial-discriminative network for leukocyte classification in leukemia. Med Phys 47(8):3732–3744 Srisukkham W, Zhang L, Neoh SC, Todryk S, Lim CP (2017) Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization. Appl Soft Comput 56:405–419 Al-jaboriy SS, Sjarif NNA, Chuprat S, Abduallah WM (2019) Acute lymphoblastic leukemia segmentation using local pixel information. Pattern Recogn Lett 125:85–90 Sneha D, Alagu S, Chrompet C (2021) A novel segmentation approach for acute lymphocytic leukemiadetection using deep learning. Conference: International Conference on Innovations in Electronics and communication (ICIECS 2021). https://www.researchgate.net/publication/353659988 Moher ALD, Tetzlaff J, Altman DG, P. Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annal Int Med 151:264–269 A Rosales-Pérez (2022) "A review on machine learning techniques for acute leukemia classification," Biosignal Processing and Classification Using Computational Learning and Intelligence 429–446: Elsevier Thomas B, Harshitha R, Beham AR (2023) A novel approach to detect acute lymphoblastic leukemia. 2125–2129. https://doi.org/10.1109/ICBSII58188.2023.10181067 Rajpurohit S, Patil S, Choudhary N, Gavasane S, Kosamkar P (2018) Identification of acute lymphoblastic leukemia in microscopic blood image using image processing and machine learning algorithms. 2359–2363. https://doi.org/10.1109/ICACCI.2018.855457 Acharya V, Kumar P (2019) Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput 57(8):1783–1811 Mirmohammadi P, Ameri M, Shalbaf A (2021) Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med 44(2):433–441 Ahmed N, Yigit A, Isik Z, Alpkocak A (2019) Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics 9(3):104 Jha KK, Dutta HS (2019) Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images. Comput Methods Programs Biomed 179:104987 Kumar I, Bhatt C, Vimal V, Qamar S (2021) Automated white corpuscles nucleus segmentation using deep neural network from microscopic blood smear. J Intell Fuzzy Syst 1075–1088 Jagadev P, Virani H (2017) Detection of leukemia and its types using image processing and machine learning. 522–526. https://doi.org/10.1109/ICOEI.2017.8300983 Janaki R (2020) Detection of leukemia in microscopic white blood cell images using Gaussian feature convolutional visual recognition algorithm. J Critic Rev 7(3):173–180 Jothi G, Inbarani HH, Azar AT, Devi KR (2018) Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput Appl 31(9):5175–5194 Ur Rahman SI, Jadoon M, Ali S, Khattak H, Huang J, Nazir S (2021) Efficient segmentation of lymphoblast in acute lymphocytic leukemia. Sci Program 2021:1–7 Rawat J, Singh A, Bhadauria H, Virmani J, Devgun JS (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl 76(18):19057–19085 Das BK, Dutta HS (2020) GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Med Biol Eng Comput 58(11):2789–2803 Cabrera RJA, Legaspi CAP, Papa EJG, Samonte RD, Acula DD (2017) HeMatic: an automated leukemia detector with separation of overlapping blood cells through image processing and genetic algorithm. 985–987. https://doi.org/10.1109/ICASI.2017.7988618 Shankar V, Deshpande MM, Chaitra N, Aditi S (2016) Automatic detection of acute lymphoblasitc leukemia using image processing. 186–189. https://doi.org/10.1109/ICACA.2016.7887948 Mishra S, Majhi B, Sa PK, Sharma L (2017) Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection. Biomed Signal Process Control 33:272–280 Suryani E, Palgunadi S, Pradana TN (2017) Classification of acute myelogenous leukemia (AML M2 and AML M3) using momentum back propagation from watershed distance transform segmented images. 012044. https://doi.org/10.1088/1742-6596/801/1/012044 Wang Y, Cao Y (2019) Quick leukocyte nucleus segmentation in leukocyte counting. Comput Math Methods Med 2019:3072498 Sneha D, Alagu S (2021) Chronological sine cosine algorithm based deep CNN for acute lymphocytic leukemia detection. Artificial Intelligence: Advances and Application (ICAIAA 2021). https://www.researchgate.net/publication/353659892 Di Ruberto C, Loddo A, Putzu L (2020) Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput Biol Med 116:103530 Acharya V, Ravi V, Pham TD, Chakraborty C (2021) Peripheral blood smear analysis using automated computer-aided diagnosis system to identify acute myeloid leukemia. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2021.3103549 Negm AS, Hassan OA, Kandil AH (2018) A decision support system for Acute Leukaemia classification based on digital microscopic images. Alex Eng J 57(4):2319–2332 Rawat J, Singh A, Bhadauria H, Kumar I (2014) Comparative analysis of segmentation algorithms for leukocyte extraction in the acute Lymphoblastic Leukemia images. 245–250. https://doi.org/10.1109/PDGC.2014.7030750 Reena MR, Ameer PM (2020) Localization and recognition of leukocytes in peripheral blood: A deep learning approach. Comput Biol Med 126:104034 Shinde S, Sharma N, Bansod P, Singh M, Tekam CKS (2020) Automated nucleus segmentation of leukemia blast cells: color spaces study. 1–5. https://doi.org/10.1109/IDEA49133.2020.9170721 Dharani T, Hariprasath S (2018) Diagnosis of leukemia and its types using digital image processing techniques. 275–279. https://doi.org/10.1109/CESYS.2018.8724075 Rehman A, Abbas N, Saba T, Rahman SIU, Mehmood Z, Kolivand H (2018) Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech 81(11):1310–1317 Harun NH, Bakar JA, Abd Wahab Z, Osman MK, Harun H (2020) Color image enhancement of acute leukemia cells in blood microscopic image for leukemia detection sample. 24–29. https://doi.org/10.1109/ISCAIE47305.2020.9108810 AV Ikechukwu, S Murali (2022) “i-Net: a deep CNN model for white blood cancer segmentation and classification.” Int J Adv Technol Eng Explor 9(95) Boreiri Z, Azad AN, Ghodousian A (2022) A convolutional neuro-fuzzy network using fuzzy image segmentation for acute leukemia classification. 1–7. https://doi.org/10.1109/CSICC55295.2022.9780525 Jothi G, Inbarani HH, Azar AT, Devi KR (2019) Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput Appl 31(9):5175–5194 Acharya V, Kumar P (2018) Identification and red blood cell automated counting from blood smear images using computer-aided system. Med Biol Eng Comput 56(3):483–489 Su J, Han J, Song J (2021) A benchmark bone marrow aspirate smear dataset and a multi-scale cell detection model for the diagnosis of hematological disorders. Comput Med Imaging Graph 90:101912 Di Ruberto C, Loddo A, Putzu L (2020) Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput Biol Med 116:103530 Chin Neoh S, Srisukkham W, Zhang L, Todryk S, Greystoke B, Peng Lim C, Alamgir Hossain M, Aslam N (2015) An intelligent decision support system for leukaemia diagnosis using microscopic blood images. Sci Rep 5(1):1–14