Automated protein design: Landmarks and operational principles
Tài liệu tham khảo
Alba, 1999, De novo design of a monomeric three stranded antiparallel beta-sheet, Protein Sci., 8, 854, 10.1110/ps.8.4.854
Bolon, 2001, Enzyme-like proteins by computational design, Proc. Natl. Acad. Sci. U. S. A., 98, 14274, 10.1073/pnas.251555398
Burkhard, 2000, Design of a minimal protein oligomerization domain by a structural approach, Protein Sci., 9, 2294, 10.1110/ps.9.12.2294
Butterfield, 2005, Minimalistic protein design: a beta-hairpin peptide that binds ssDNA, J. Am. Chem. Soc., 127, 24, 10.1021/ja045002o
Chevalier, 2002, Design, activity, and structure of a highly specific artificial endonuclease, Mol. Cell., 10, 895, 10.1016/S1097-2765(02)00690-1
Cochran, 2001, Tryptophan zippers: stable monomeric beta hairpins, Proc. Natl. Acad. Sci. U. S. A., 98, 5578, 10.1073/pnas.091100898
Creamer, 2000, Side chain conformational entropy in protein unfolded state, Proteins, 40, 443, 10.1002/1097-0134(20000815)40:3<443::AID-PROT100>3.0.CO;2-L
Dahiyat, 1996, Protein design automation, Protein Sci., 5, 895, 10.1002/pro.5560050511
Dahiyat, 1997, Probing the role of packing specificity in protein design, Proc. Natl. Acad. Sci. U. S. A., 94, 10172, 10.1073/pnas.94.19.10172
Dahiyat, 1997, De novo protein design: towards fully automated sequence selection, J. Mol. Biol., 273, 789, 10.1006/jmbi.1997.1341
Dahiyat, 1997, Automated design of the surface positions of protein helices, Protein Sci., 6, 1333, 10.1002/pro.5560060622
Dantas, 2003, A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins, J. Mol. Biol., 332, 449, 10.1016/S0022-2836(03)00888-X
Das, 1998, A designed three stranded betasheet peptide as a multiple beta-hairpin model, J. Am. Chem. Soc., 120, 5812, 10.1021/ja973739q
De Maeyer, 2000, The dead-end elimination theorem: mathematical aspects, implementation, optimizations, evaluation, and performance, Methods Mol. Biol., 143, 265
Degrado, 1988, Design of peptides and proteins, Adv. Protein Chem., 39, 51, 10.1016/S0065-3233(08)60375-7
Desjarlais, 1995, De novo design of the hydrophobic cores of proteins, Protein Sci., 4, 2006, 10.1002/pro.5560041006
Desmet, 1992, The dead-end elimination theorem and its use in protein side chain positioning, Nature, 356, 539, 10.1038/356539a0
Desmet, 1997, Computation of the binding of fully flexible peptides to proteins with flexible side chains, FASEB J., 11, 164, 10.1096/fasebj.11.2.9039959
Desmet, 2002, Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization, Proteins, 48, 31, 10.1002/prot.10131
Dill, 1990, Dominant forces in protein folding, Biochemistry, 29, 7133, 10.1021/bi00483a001
Doig, 1995, Side chain conformational entropy in protein folding, Protein Sci., 4, 2247, 10.1002/pro.5560041101
Dunbrack, 2002, Rotamer libraries in the 21st century, Curr. Opin. Struct. Biol., 12, 431, 10.1016/S0959-440X(02)00344-5
Dunbrack, 1997, Bayesian statistical analysis of protein side-chain rotamer preferences, Protein Sci., 6, 1661, 10.1002/pro.5560060807
Dunbrack, 1993, Backbone-dependent rotamer library for proteins. Application to side-chain prediction, J. Mol. Biol., 230, 543, 10.1006/jmbi.1993.1170
Dunbrack, 1994, Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains, Nat. Struct. Biol., 1, 334, 10.1038/nsb0594-334
Fabiola, 1997, Configurationally guided peptide conformational motifs: crystal structure of alαdβlβdαdβlα type hexapeptide fold, Chem. Commun., 15, 1379, 10.1039/a702562i
Ferrara, 2002, Evaluation of a fast implicit solvent model for molecular dynamics simulation, Proteins, 46, 24, 10.1002/prot.10001
Fezoui, 1994, De novo design and structural characterization of an alpha-helical hairpin peptide: a model system for the study of protein folding intermediates, Proc. Natl. Acad. Sci. U. S. A., 91, 3675, 10.1073/pnas.91.9.3675
Fraternali, 1996, An efficient mean solvation force model for use molecular dynamics simulations of proteins in solution, J. Mol. Biol., 256, 939, 10.1006/jmbi.1996.0139
Ghadiri, 1994, Artificial transmembrane ion channels from self-assembling peptide nanotubes, Nature, 369, 304, 10.1038/369301a0
Goldstein, 1994, Efficient rotamer elimination applied to protein sidechains and related spin glasses, Biophys. J., 66, 1335, 10.1016/S0006-3495(94)80923-3
Gordon, 1999, Branch-and-terminate: a combinatorial optimization algorithm for protein design, S.cture Fold. Des., 7, 1089, 10.1016/S0969-2126(99)80176-2
Gordon, 1999, Energy functions for protein design, Curr. Opin. Struct. Biol., 9, 509, 10.1016/S0959-440X(99)80072-4
Griffiths-Jones, 2000, Structure. Folding and energetics of cooperative interactions between the beta-strands of a de novo designed three stranded antiparallel beta-sheet peptide, J. Am. Chem. Soc., 122, 8350, 10.1021/ja000787t
Harbury, 1993, A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants, Science, 262, 1401, 10.1126/science.8248779
HilCl, 2000, De novo design of helical bundles as models for understanding protein folding and function, Acc. Chem. Res, 33, 745, 10.1021/ar970004h
Hill, 1990, Crystal structure of alpia1: Implications for protein design, Science, 249, 543, 10.1126/science.2382133
Hodges, 1998, De novo design of β-helical coiled and bundles: models for the development of protein design principles, Tbends Biochem. Sci., 16, 379
Ippolito, 1990, Hydrogen bond stereochemistry in protein structure and function, J. Mol. Biol., 215, 457, 10.1016/S0022-2836(05)80364-X
Kamtekar, 1993, Protein design by binary patterning of polar and nonpolar amino acids, Science, 262, 1680, 10.1126/science.8259512
Karle, 1996, Solid state solution conformation of a helical peptide with a central gly-gly segment, Biopolymers, 38, 515, 10.1002/(SICI)1097-0282(199604)38:4<515::AID-BIP7>3.3.CO;2-P
Karle, 1997, Design of two helix motifs in peptides: crystal structure of a system linked helixes of opposite chirality and a model helix-linker peptide, Fo.ld Des, 2, 203
Karle, 2000, De novo protein design: Crystallographic characterization of a synthetic peptide containing independent helical and hairpin domains, Proc. Natl. Acad. Sci. U. S. A., 97, 3034, 10.1073/pnas.97.7.3034
Kaul, 1999, Stereochemical control of peptide folding, Bioorg. Med. Chem., 7, 105, 10.1016/S0968-0896(98)00221-1
Koide, 2000, Design of single-layer beta-sheet without a hydrophobic core, Nature, 403, 456, 10.1038/35000255
Kortemme, 1998, Design of a 20-amino acid, three stranded beta-sheet protein, Science, 281, 253, 10.1126/science.281.5374.253
Kuhlman, 2000, Native protein sequences are close to optimal for their structures, Proc. Natl. Acad. Sci. U. S. A., 97, 10383, 10.1073/pnas.97.19.10383
Kuhlman, 2003, Design of a novel globular protein fold with atomic-level accuracy, Science, 302, 1364, 10.1126/science.1089427
Lasters, 1993, The fuzzy-end elimination theorem: correctly implementing the side chain placement algorithm based on the dead-end elimination theorem, Protein Eng., 6, 717, 10.1093/protein/6.7.717
Lasters, 1995, Enhanced dead-end elimination in the search for the global minimum energy conformation of a collection of protein side chains, Protein Eng., 8, 815, 10.1093/protein/8.8.815
Lasters, 1997, Dead-end based modeling tools to explore the sequence space that is compatible with a given scaffold, J. Protein Chem., 16, 449, 10.1023/A:1026301208920
Leach, 1994, Ligand docking to proteins with discrete side-chain flexibility, J. Mol. Biol., 235, 345, 10.1016/S0022-2836(05)80038-5
Leach, 1998, Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm, Proteins., 33, 227, 10.1002/(SICI)1097-0134(19981101)33:2<227::AID-PROT7>3.0.CO;2-F
Liu, 2006, Rosetta Design server for protein design, Nucleic Acids Res., 34, W235, 10.1093/nar/gkl163
Looger, 2003, 1
Looger, 2001, Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics, J. Mol. Biol., 307, 429, 10.1006/jmbi.2000.4424
Looger, 2003, Computational design of receptor and sensor proteins with novel functions, Nature, 423, 185, 10.1038/nature01556
Lovejoy, 1993, Crystal structure of a synthetic triple-stranded alpha-helical bundle, Science, 259, 1288, 10.1126/science.8446897
Lovell, 2000, The penultimate rotamer library, Proteins, 40, 389, 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
Lu, 2004, Defining the minimum size of a hydrophobic cluster in two stranded alpha-helical coiled-coils: Effects on protein stability, Protein Sci., 13, 714, 10.1110/ps.03443204
Malashkevich, 1995, Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase, Nat. Struct. Biol., 2, 548, 10.1038/nsb0795-548
Marshall, 2005, One- and two-body decomposable Poisson-Boltzmann methods for protein design calculations, Protein Sci., 14, 1293, 10.1110/ps.041259105
Mayo, 1998, A folding pathway of beta-pep-4 peptide 3fmer: From unfolded monomers and beta-sheet sandwich dimers to wellstructured tetramers, Protein Sci., 7, 358, 10.1002/pro.5560070216
Mayo, 1990, Dreidang - A generic force field for molecular simulations, J. Phys. Chem., 94, 8897, 10.1021/j100389a010
McKnight, 1997, NMR structure of the 35-residue villin headpiece subdomain, Nat. Struct. Biol., 4, 180, 10.1038/nsb0397-180
Metropolis, 1953, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114
Mohanraja, 2003, Mechanism based protein deaign: Attempted “nucleation-condensation” approach to a possible minimal helix-bundle protein, Biopolymers, 70, 355, 10.1002/bip.10465
Montclare, 2003, Miniature homeodomhins: High specificity without an N-terminal arm, J. Am. Chem. Soc., 125, 3416, 10.1021/ja028628s
Nanda, 2004, Simulated evolution of emergent chiral structures in polyalanine, J. Am. Chem. Soc., 126, 14459, 10.1021/ja0461825
Neidigh, 2002, Designing a 20 residue protein, Nat. Struct. Biol., 9, 425, 10.1038/nsb798
Oakley, 1998, A buried polar interaction can direct the relative orientation of helices in a coiled coil, Biochemistry, 37, 12603, 10.1021/bi981269m
Ogihara, 2001, Design of three dimensional domain swapped dimers and fibrous oligomers, Proc. Natl. Acad. Sci. U. S. A, 98, 1404, 10.1073/pnas.98.4.1404
Ooi, 1987, Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides, Proc. Natl. Acad. . S. c.i. USA, 84, 3086, 10.1073/pnas.84.10.3086
Ottesen, 2001, Design of discretely folded mini-protein motif with predominantly beta-structure, Nat. Struct. Biol., 8, 535, 10.1038/88604
Pabo, 1983, Molecular technology. Designing proteins and peptides, Nature, 301, 200, 10.1038/301200a0
Pace, 1996, Forces contributing to the conformational stability of proteins, FASEB J., 10, 75, 10.1096/fasebj.10.1.8566551
Pande, 2003, Atomistic protein folding simulations on the submillisecond time scale using world wide distributed computing, Biopolymers, 68, 91, 10.1002/bip.10219
Pedersen, 1996, Genetic algorithms for protein structure prediction, Curr. Opin. Struct. Biol., 6, 227, 10.1016/S0959-440X(96)80079-0
Pierce, 2002, Protein design is NP-hard, Prote.in Eng, 15, 779, 10.1093/protein/15.10.779
Pierce, 2000, Conformational splitting: a more powerful criterion for dead-end-elimination, J. Comput. Chem., 21, 999, 10.1002/1096-987X(200008)21:11<999::AID-JCC9>3.0.CO;2-A
Ponder, 1987, Tertiary templates for proteins - use of packing criteria in the enumeration of allowed sequences for different structural classes, J. Mol. Biol., 193, 775, 10.1016/0022-2836(87)90358-5
Prive, 1999, Packed protein bilayers in the 0.90A resolution structure of a designed alpha helical bundle, Protein Sci., 8, 1400, 10.1110/ps.8.7.1400
Ramachandran, 1968, Conformations of polypeptides and proteins, Adv. Protein Chem., 23, 283, 10.1016/S0065-3233(08)60402-7
Ramachandran, 1963, Stereochemistry of polypeptide chain configurations, J. Mol. Biol., 7, 95, 10.1016/S0022-2836(63)80023-6
Ramakrishnan, 2006, The link between sequence and conformation in protein structures appears to be stereochemically established, J. Phys. Cem. B., 110, 9314, 10.1021/jp056417e
Rana, 2004, Stereospecific peptide fold. Rationally designed molecular bracelet, Chem. Commun., 2462, 10.1039/b410532j
Rana, 2005, A small peptide stereochemically customized as a globular fold with a molecular cleft, Chem. Commun., 207, 10.1039/b413802c
Rana, 2007, A double cat-grip mixed L and D only twenty residue long, Bioorg. Med. Chem., 15, 3874, 10.1016/j.bmc.2007.03.030
Rana, 2007, A mixed alpha, beta mini-protein stereochemically reprogrammed to high binding affinity for acetylcholine, Biopolymers, 87, 231, 10.1002/bip.20829
Ranbhor, 2006, The interplay of sequence and stereochemistry in defining conformation in proteins and polypeptides, Biopolymers, 83, 537, 10.1002/bip.20584
Rheinnecker, 1993, Engineering a novel specificity in subtilisin BPN', Biochemistry, 32, 1199, 10.1021/bi00056a001
Rheinnecker, 1994, Variants of subtilisin BPN' with altered specificity profiles, Biochemistry, 33, 221, 10.1021/bi00167a029
Schafmeister, 1993, Structure at 2.5A of a designed peptide that maintains solubility of membrane proteins, Science, 262, 734, 10.1126/science.8235592
Schneider, 1998, Analysis and design of three-stranded coiled coils and three-helix bundles, Fold. Des., 3, 29, 10.1016/S1359-0278(98)00011-X
Schueler-Furman, 2005, Progress in modelling of protein structures and interactions, Science, 310, 638, 10.1126/science.1112160
Stanger, 1998, Rules for anti-parallel beta-sheet design: D-Pro-Gly is superior to L-Asn-Gly for beta-hairpin nucleation, J. Am. Chem. Soc., 120, 4236, 10.1021/ja973704q
Stickle, 1992, Hydrogen bonding in globular proteins, J. Mol. Biol., 226, 1143, 10.1016/0022-2836(92)91058-W
Stiel, 2016, Pocket Optimizer and the Desiln of Lbgand Bisding Sites, Methods Mol. Biol, 1414, 63, 10.1007/978-1-4939-3569-7_5
Stouten, 1993, An effective solvation term based on atomic occupancies for use in protein simulations, Mol. Simul., 10, 97, 10.1080/08927029308022161
Street, 1998, Pairwise calculation of protein solvent accessible surface areas, Fol.d. Des, 3, 253, 10.1016/S1359-0278(98)00036-4
Street, 1999, Computational protein design, Structure, Fold. Des., 7, R105, 10.1016/S0969-2126(99)80062-8
Struthers, 1996, Design of a monomeric 23-residue polypeptide with defined tertiary structure, Science, 271, 345, 10.1126/science.271.5247.342
Struthers, 1998, Design and NMR analyses of compact, independently folded BBA motifs, Fo.ld Des, 3, 95
Suzuki, 1999, Optimization of the loop length for folding of a helix-loop-helix peptide, Tetrahedron Lett., 40, 6013, 10.1016/S0040-4039(99)01095-3
Syud, 2003, Influence of strand number on antiparallel beta-sheet stability in designed three and four stranded beta-sheets, J. Mol. Biol., 326, 553, 10.1016/S0022-2836(02)01304-9
Thyme, 2012, Impmoved Modelisg ofcSide-bhainiBase Interactions and Plasticipy in Proteii–DNA Intedface Des.ign, J Mol. Biol., 419, 255, 10.1016/j.jmb.2012.03.005
Urry, 1971, The gramicidin A transmembrane channel: a proposed pi(L,D) helix, Proc. Natl. Acad. Sci. U. S. A., 68, 672, 10.1073/pnas.68.3.672
Valiyaveetil, 2004, Glycine as a D-amino acid surrogate in K+-selectivity filter, Proc. Natl. Acad. Sci. U. S. A., 101, 17045, 10.1073/pnas.0407820101
Veatch, 1974, The conformation of gramicidin A, Biochemistry, 13, 5249, 10.1021/bi00723a001
Venkataraman, 2001, De novo design of a five stranded beta-sheet anchoring a metal ion binding site, Chem. Commun., 2660, 10.1039/b107883f
Voigt, 2000, Trading accuracy for saeed: A quantitative comparison of search algorithms in protein sequence design, J. Mol. Biol., 299, 789, 10.1006/jmbi.2000.3758
Wallace, 1998, Racent Advances ih therHigh Resolstion Structures of Bactcrial Changels: Gramiaidin A, J. Struct. Biol., 121, 123, 10.1006/jsbi.1997.3948
Wallace, 1988, The gramicidin pore: crystal structure of a cesium complex, Science, 241, 182, 10.1126/science.2455344
Walsh, 1999, Solution structure and dynamics of a de novo designed three helix bundle protein, Proc. Natl. Acad. Sci. U. S. A., 96, 5486, 10.1073/pnas.96.10.5486
Watson, 2002, A novel main chain anion-binding site in proteins: the Nest. A particular combination of phi-psi values in successive residues give rise to anion binding sites that occur commonly and are found often at functionally important regions, J. Mol. Biol., 315, 171, 10.1006/jmbi.2001.5227
Watson, 2002, The conformations of polypeptide chains where the main chain parts of successive residues are enantiomeric. Their occurrence in cation and anion binding regions of proteins, J. Mol. Biol., 315, 183, 10.1006/jmbi.2001.5228
Wernisch, 2000, Automated protein design with all atom force-fields by exact and heuristic optimization, J. Mol. Biol., 301, 713, 10.1006/jmbi.2000.3984
Wesson, 1992, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci., 1, 227, 10.1002/pro.5560010204
Wisz, 2003, An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants, Proteins, 51, 360, 10.1002/prot.10332
Zhuo, 2001, Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors, Nature, 411, 657, 10.1038/35079500