Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury

NeuroImage: Clinical - Tập 35 - Trang 103027 - 2022
K. Koschmieder1, M.M. Paul1, T.L.A. van den Heuvel1, A.W. van der Eerden2, B. van Ginneken1, R. Manniesing1
1Radboudumc, Departmentof Radiology and Nuclear Medicine, Nijmegen, The Netherlands
2Erasmus MC, department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands

Tài liệu tham khảo

Barnes, 2011, Semiautomated detection of cerebral microbleeds in magnetic resonance images, Magn. Resonance Imaging, 29, 844, 10.1016/j.mri.2011.02.028 Chao, 2006, Cerebral amyloid angiopathy: Ct and mr imaging findings, Radiographics, 26, 1517, 10.1148/rg.265055090 Charidimou, 2013, Cerebral microbleeds and recurrent stroke risk: systematic review and meta-analysis of prospective ischemic stroke and transient ischemic attack cohorts, Stroke, 44, 995, 10.1161/STROKEAHA.111.000038 Charidimou, 2012, Cerebral microbleeds and cognition in cerebrovascular disease: an update, J. Neurol. Sci., 322, 50, 10.1016/j.jns.2012.05.052 Chen, 2015, Automatic detection of cerebral microbleeds via deep learning based 3d feature representation, 764 Çiçek, 2016, 3d u-net: learning dense volumetric segmentation from sparse annotation, International conference on medical image computing and computer-assisted intervention, Springer, 424 Cordonnier, 2009, Improving interrater agreement about brain microbleeds: development of the brain observer microbleed scale (bombs), Stroke, 40, 94, 10.1161/STROKEAHA.108.526996 Dou, 2016, Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks, IEEE Trans. Med. Imaging, 35, 1182, 10.1109/TMI.2016.2528129 Greenberg, S.M., Vernooij, M.W., Cordonnier, C., Viswanathan, A., Salman, R.A.S., Warach, S., Launer, L.J., Van Buchem, M.A., Breteler, M.M., Group, M.S., et al., 2009. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8, 165–174. Gregoire, 2009, The microbleed anatomical rating scale (mars) reliability of a tool to map brain microbleeds, Neurology, 73, 1759, 10.1212/WNL.0b013e3181c34a7d Haacke, 2009, Susceptibility-weighted imaging: technical aspects and clinical applications, part 1, Am. J. Neuroradiol., 30, 19, 10.3174/ajnr.A1400 Haacke, 2004, Susceptibility weighted imaging (swi), Magn. Resonance Med., 52, 612, 10.1002/mrm.20198 Van den Heuvel, 2016, Automated detection of cerebral microbleeds in patients with traumatic brain injury, NeuroImage: Clinical, 12, 241, 10.1016/j.nicl.2016.07.002 Hill, 2016, Traumatic axonal injury: mechanisms and translational opportunities, Trends Neurosci., 39, 311, 10.1016/j.tins.2016.03.002 Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H., 2019a. nnu-net: Breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128 1, 1–8. Isensee, 2019, Automated brain extraction of multisequence mri using artificial neural networks, Human Brain Mapp., 40, 4952, 10.1002/hbm.24750 Iwamura, 2012, Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage, Neuroradiology, 54, 335, 10.1007/s00234-011-0892-9 Izzy, 2017, Revisiting grade 3 diffuse axonal injury: not all brainstem microbleeds are prognostically equal, Neurocritical Care, 27, 199, 10.1007/s12028-017-0399-2 Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2018. Boundary loss for highly unbalanced segmentation. arXiv preprint arXiv:1812.07032. King, 2005, Early glasgow outcome scale scores predict long-term functional outcome in patients with severe traumatic brain injury, J. Neurotrauma, 22, 947, 10.1089/neu.2005.22.947 Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Adv. Neural Inform. Processing Syst., 25, 1097 Kuijf, H.J., 2021. Mixmicrobleednet: segmentation of cerebral microbleeds using nnu-net. arXiv preprint arXiv:2108.01389. Kuijf, 2012, Efficient detection of cerebral microbleeds on 7.0 t mr images using the radial symmetry transform, Neuroimage, 59, 2266, 10.1016/j.neuroimage.2011.09.061 Litjens, 2017, A survey on deep learning in medical image analysis, Med. Image Anal., 42, 60, 10.1016/j.media.2017.07.005 Liu, 2014, Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques, Neural Regener. Res., 9, 1222, 10.4103/1673-5374.135330 Liu, 2019, Cerebral microbleed detection using susceptibility weighted imaging and deep learning, NeuroImage, 198, 271, 10.1016/j.neuroimage.2019.05.046 Loy, 2003, Fast radial symmetry for detecting points of interest, IEEE Trans. Pattern Anal. Mach. Intell., 25, 959, 10.1109/TPAMI.2003.1217601 Maas, 2017, Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research, Lancet Neurol., 16, 987, 10.1016/S1474-4422(17)30371-X McNett, 2007, A review of the predictive ability of glasgow coma scale scores in head-injured patients, J. Neurosci. Nurs., 39, 68, 10.1097/01376517-200704000-00002 Miller, 1969, The froc curve: A representation of the observer’s performance for the method of free response, J. Acoust. Soc. Am., 46, 1473, 10.1121/1.1911889 Nandigam, 2009, Mr imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength, Am. J. Neuroradiol., 30, 338, 10.3174/ajnr.A1355 Passos, 2017, Microbleeds and cavernomas after radiotherapy for paediatric primary brain tumours, J. Neurol. Sci., 372, 413, 10.1016/j.jns.2016.11.005 Scheid, 2003, Diffuse axonal injury associated with chronic traumatic brain injury: evidence from t2*-weighted gradient-echo imaging at 3 t, Am. J. Neuroradiol., 24, 1049 Standvoss, 2018, Cerebral microbleed detection in traumatic brain injury patients using 3d convolutional neural networks, 105751D Teasdale, 1974, Assessment of coma and impaired consciousness: a practical scale, Lancet, 304, 81, 10.1016/S0140-6736(74)91639-0 Tustison, 2010, N4itk: improved n3 bias correction, IEEE Trans. Med. Imaging, 29, 1310, 10.1109/TMI.2010.2046908 Vernooij, 2007, Incidental findings on brain mri in the general population, N. Engl. J. Med., 357, 1821, 10.1056/NEJMoa070972