Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury
Tài liệu tham khảo
Barnes, 2011, Semiautomated detection of cerebral microbleeds in magnetic resonance images, Magn. Resonance Imaging, 29, 844, 10.1016/j.mri.2011.02.028
Chao, 2006, Cerebral amyloid angiopathy: Ct and mr imaging findings, Radiographics, 26, 1517, 10.1148/rg.265055090
Charidimou, 2013, Cerebral microbleeds and recurrent stroke risk: systematic review and meta-analysis of prospective ischemic stroke and transient ischemic attack cohorts, Stroke, 44, 995, 10.1161/STROKEAHA.111.000038
Charidimou, 2012, Cerebral microbleeds and cognition in cerebrovascular disease: an update, J. Neurol. Sci., 322, 50, 10.1016/j.jns.2012.05.052
Chen, 2015, Automatic detection of cerebral microbleeds via deep learning based 3d feature representation, 764
Çiçek, 2016, 3d u-net: learning dense volumetric segmentation from sparse annotation, International conference on medical image computing and computer-assisted intervention, Springer, 424
Cordonnier, 2009, Improving interrater agreement about brain microbleeds: development of the brain observer microbleed scale (bombs), Stroke, 40, 94, 10.1161/STROKEAHA.108.526996
Dou, 2016, Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks, IEEE Trans. Med. Imaging, 35, 1182, 10.1109/TMI.2016.2528129
Greenberg, S.M., Vernooij, M.W., Cordonnier, C., Viswanathan, A., Salman, R.A.S., Warach, S., Launer, L.J., Van Buchem, M.A., Breteler, M.M., Group, M.S., et al., 2009. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8, 165–174.
Gregoire, 2009, The microbleed anatomical rating scale (mars) reliability of a tool to map brain microbleeds, Neurology, 73, 1759, 10.1212/WNL.0b013e3181c34a7d
Haacke, 2009, Susceptibility-weighted imaging: technical aspects and clinical applications, part 1, Am. J. Neuroradiol., 30, 19, 10.3174/ajnr.A1400
Haacke, 2004, Susceptibility weighted imaging (swi), Magn. Resonance Med., 52, 612, 10.1002/mrm.20198
Van den Heuvel, 2016, Automated detection of cerebral microbleeds in patients with traumatic brain injury, NeuroImage: Clinical, 12, 241, 10.1016/j.nicl.2016.07.002
Hill, 2016, Traumatic axonal injury: mechanisms and translational opportunities, Trends Neurosci., 39, 311, 10.1016/j.tins.2016.03.002
Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486.
Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H., 2019a. nnu-net: Breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128 1, 1–8.
Isensee, 2019, Automated brain extraction of multisequence mri using artificial neural networks, Human Brain Mapp., 40, 4952, 10.1002/hbm.24750
Iwamura, 2012, Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage, Neuroradiology, 54, 335, 10.1007/s00234-011-0892-9
Izzy, 2017, Revisiting grade 3 diffuse axonal injury: not all brainstem microbleeds are prognostically equal, Neurocritical Care, 27, 199, 10.1007/s12028-017-0399-2
Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2018. Boundary loss for highly unbalanced segmentation. arXiv preprint arXiv:1812.07032.
King, 2005, Early glasgow outcome scale scores predict long-term functional outcome in patients with severe traumatic brain injury, J. Neurotrauma, 22, 947, 10.1089/neu.2005.22.947
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Adv. Neural Inform. Processing Syst., 25, 1097
Kuijf, H.J., 2021. Mixmicrobleednet: segmentation of cerebral microbleeds using nnu-net. arXiv preprint arXiv:2108.01389.
Kuijf, 2012, Efficient detection of cerebral microbleeds on 7.0 t mr images using the radial symmetry transform, Neuroimage, 59, 2266, 10.1016/j.neuroimage.2011.09.061
Litjens, 2017, A survey on deep learning in medical image analysis, Med. Image Anal., 42, 60, 10.1016/j.media.2017.07.005
Liu, 2014, Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques, Neural Regener. Res., 9, 1222, 10.4103/1673-5374.135330
Liu, 2019, Cerebral microbleed detection using susceptibility weighted imaging and deep learning, NeuroImage, 198, 271, 10.1016/j.neuroimage.2019.05.046
Loy, 2003, Fast radial symmetry for detecting points of interest, IEEE Trans. Pattern Anal. Mach. Intell., 25, 959, 10.1109/TPAMI.2003.1217601
Maas, 2017, Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research, Lancet Neurol., 16, 987, 10.1016/S1474-4422(17)30371-X
McNett, 2007, A review of the predictive ability of glasgow coma scale scores in head-injured patients, J. Neurosci. Nurs., 39, 68, 10.1097/01376517-200704000-00002
Miller, 1969, The froc curve: A representation of the observer’s performance for the method of free response, J. Acoust. Soc. Am., 46, 1473, 10.1121/1.1911889
Nandigam, 2009, Mr imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength, Am. J. Neuroradiol., 30, 338, 10.3174/ajnr.A1355
Passos, 2017, Microbleeds and cavernomas after radiotherapy for paediatric primary brain tumours, J. Neurol. Sci., 372, 413, 10.1016/j.jns.2016.11.005
Scheid, 2003, Diffuse axonal injury associated with chronic traumatic brain injury: evidence from t2*-weighted gradient-echo imaging at 3 t, Am. J. Neuroradiol., 24, 1049
Standvoss, 2018, Cerebral microbleed detection in traumatic brain injury patients using 3d convolutional neural networks, 105751D
Teasdale, 1974, Assessment of coma and impaired consciousness: a practical scale, Lancet, 304, 81, 10.1016/S0140-6736(74)91639-0
Tustison, 2010, N4itk: improved n3 bias correction, IEEE Trans. Med. Imaging, 29, 1310, 10.1109/TMI.2010.2046908
Vernooij, 2007, Incidental findings on brain mri in the general population, N. Engl. J. Med., 357, 1821, 10.1056/NEJMoa070972