Autoimmune Epilepsy

Elsevier BV - Tập 16 - Trang 685-702 - 2019
Khalil S. Husari1, Divyanshu Dubey2
1Comprehensive Epilepsy Center, Department of Neurology, Johns Hopkins University, Baltimore, USA
2Department of Neurology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA

Tóm tắt

The field of autoimmune epilepsy has evolved substantially in the last few decades with discovery of several neural autoantibodies and improved mechanistic understanding of these immune-mediated syndromes. A considerable proportion of patients with epilepsy of unknown etiology have been demonstrated to have an autoimmune cause. The majority of the patients with autoimmune epilepsy usually present with new-onset refractory seizures along with subacute progressive cognitive decline and behavioral or psychiatric dysfunction. Neural specific antibodies commonly associated with autoimmune epilepsy include leucine-rich glioma-inactivated protein 1 (LGI1), N-methyl-d-aspartate receptor (NMDA-R), and glutamic acid decarboxylase 65 (GAD65) IgG. Diagnosis of these cases depends on the identification of the clinical syndrome and ancillary studies including autoantibody evaluation. Predictive models (Antibody Prevalence in Epilepsy and Encephalopathy [APE2] and Response to Immunotherapy in Epilepsy and Encephalopathy [RITE2] scores) based on clinical features and initial neurological assessment may be utilized for selection of cases for autoimmune epilepsy evaluation and management. In this article, we will review the recent advances in autoimmune epilepsy and provide diagnostic and therapeutic algorithms for epilepsies with suspected autoimmune etiology.

Tài liệu tham khảo

Ong, M.S., et al., Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol, 2014. 71(5): p. 569–74. Brodie, M.J., et al., The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know? Epileptic Disord, 2018. 20(2): p. 77–87. Dubey, D., S.J. Pittock, and A. McKeon, Antibody Prevalence in Epilepsy and Encephalopathy score: Increased specificity and applicability. Epilepsia, 2019. 60(2): p. 367–369. Dubey, D., et al., Neurological Autoantibody Prevalence in Epilepsy of Unknown Etiology. JAMA Neurol, 2017. 74(4): p. 397–402. Scheffer, I.E., et al., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017. 58(4): p. 512–521. Granata, T. and F. Andermann, Rasmussen encephalitis. Handb Clin Neurol, 2013. 111: p. 511–9. Britton, J., Autoimmune epilepsy. Handb Clin Neurol, 2016. 133: p. 219–45. Dalmau, J. and F. Graus, Antibody-Mediated Encephalitis. N Engl J Med, 2018. 378(9): p. 840–851. Larman, H.B., et al., Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol, 2011. 29(6): 535–41. Scharf, M., et al., A Spectrum of Neural Autoantigens, Newly Identified by Histo-Immunoprecipitation, Mass Spectrometry, and Recombinant Cell-Based Indirect Immunofluorescence. Front Immunol, 2018. 9: p. 1447. Schubert, R.D. and M.R. Wilson, A tale of two approaches: how metagenomics and proteomics are shaping the future of encephalitis diagnostics. Curr Opin Neurol, 2015. 28(3): p. 283–7. Sun, H., G.Y. Chen, and S.Q. Yao, Recent advances in microarray technologies for proteomics. Chem Biol, 2013. 20(5): p. 685–99. Toledano, M., et al., Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology, 2014. 82(18): p. 1578–86. Dubey, D., et al., Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol, 2018. 83(1): p. 166–177. Dubey, D., M. Toledano, and A. McKeon, Clinical presentation of autoimmune and viral encephalitides. Curr Opin Crit Care, 2018. 24(2): p. 80–90. Graus, F., et al., Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry, 2004. 75(8): p. 1135–40. Dubey, D., et al., Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia, 2017. 58(7): 1181–1189. Brenner, T., et al., Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia, 2013. 54(6): p. 1028–35. Abramovici, S. and A. Bagic, Epidemiology of epilepsy. Handb Clin Neurol, 2016. 138: 159–71. Wright, S., et al., Neuronal antibodies in pediatric epilepsy: Clinical features and long-term outcomes of a historical cohort not treated with immunotherapy. Epilepsia, 2016. 57(5): p. 823–31. Suleiman, J., et al., Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies. Epilepsia, 2013. 54(12): p. 2091–100. Bauer, J., et al., Innate and adaptive immunity in human epilepsies. Epilepsia, 2017. 58 Suppl 3: p. 57–68. Fujinami, R.S., et al., Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev, 2006. 19(1): p. 80–94. Armangue, T., et al., Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol, 2018. 17(9):760-772. Ohkawa, T., et al., Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci, 2013. 33(46): p. 18161–74. Aysit-Altuncu, N., et al., Effect of LGI1 antibody-positive IgG on hippocampal neuron survival: a preliminary study. Neuroreport, 2018. 29(11): p. 932–938. Hughes, E.G., et al., Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci, 2010. 30(17): 5866–75. Gresa-Arribas, N., et al., Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol, 2014. 13(2): p. 167–77. Albert, M.L., et al., Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med, 1998. 4(11): p. 1321–4. Flanagan, E. P., et al., (2017), Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Ann Neurol., 81:298–309. Liimatainen, S., et al., Clinical significance of glutamic acid decarboxylase antibodies in patients with epilepsy. Epilepsia, 2010. 51(5): p. 760–7. Daif, A., et al., Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy Behav, 2018. 80: p. 331–336. Dubey, D., et al., Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol, 2018. 323: p. 62–72. Titulaer, M.J., et al., Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol, 2013. 12(2): p. 157–65. Dalmau, J., C. Geis, and F. Graus, Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol Rev, 2017. 97(2): p. 839–887. Quek, A.M.L. and O. O’Toole, Autoimmune Epilepsy: The Evolving Science of Neural Autoimmunity and Its Impact on Epilepsy Management. Semin Neurol, 2018. 38(3): p. 290–302. Dalmau, J., et al., Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol, 2007. 61(1): p. 25–36. Titulaer, M.J., et al., Late-onset anti-NMDA receptor encephalitis. Neurology, 2013. 81(12): 1058–63. Mueller, S.H., et al., Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol, 2018. 83(4): p. 863–869. Sebastian Lopez-Chiriboga, A., et al., LGI1 and CASPR2 Neurological Autoimmunity in Children. Ann Neurol, 2018. 84(3):473-480 Irani, S.R., et al., Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol, 2011. 69(5): p. 892–900. Gadoth, A., et al., Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol, 2017. 82(1): 79–92. Lilleker, J.B., et al., The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology, 2016. 87(17): 1848–1849. van Sonderen, A., et al., The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology, 2016. 86(18): p. 1692–9. Lai, M., et al., AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol, 2009. 65(4): p. 424–34. Haselmann, H., et al., Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction. Neuron, 2018. 100(1):91-105.e9 Hoftberger, R., et al., Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology, 2015. 84(24): p. 2403–12. Joubert, B., et al., Clinical Spectrum of Encephalitis Associated With Antibodies Against the alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor: Case Series and Review of the Literature. JAMA Neurol, 2015. 72(10): p. 1163–9. Boronat, A., et al., Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol, 2013. 73(1): p. 120–8. Carr, I., The Ophelia syndrome: memory loss in Hodgkin’s disease. Lancet, 1982. 1(8276): p. 844–5. Lancaster, E., et al., Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology, 2011. 77(18): 1698–701. Spatola, M., et al., Encephalitis with mGluR5 antibodies: Symptoms and antibody effects. Neurology, 2018. 90(22): p. e1964-e1972. Pittock, S.J., et al., Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc, 2006. 81(9): p. 1207–14. Peltola, J., et al., Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology, 2000. 55(1): p. 46–50. Lilleker, J.B., V. Biswas, and R. Mohanraj, Glutamic acid decarboxylase (GAD) antibodies in epilepsy: diagnostic yield and therapeutic implications. Seizure, 2014. 23(8): p. 598–602. Roberts, W.K., et al., Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells. J Clin Invest, 2009. 119(7): 2042–51. Rudzinski, L.A., et al., Extratemporal EEG and MRI findings in ANNA-1 (anti-Hu) encephalitis. Epilepsy Res, 2011. 95(3): p. 255–62. Pittock, S.J., C.F. Lucchinetti, and V.A. Lennon, Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol, 2003. 53(5): p. 580–7. Dalmau, J., et al., Clinical analysis of anti-Ma2-associated encephalitis. Brain, 2004. 127(Pt 8): 1831–44. Voltz, R., et al., A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N Engl J Med, 1999. 340(23): p. 1788–95. Yu, Z., et al., CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol, 2001. 49(2): p. 146–54. Dubey, D., et al., Autoimmune CRMP5 neuropathy phenotype and outcome defined from 105 cases. Neurology, 2018. 90(2): p. e103-e110. Vernino, S., et al., Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol, 2002. 51(5): p. 625–30. Quek, A.M., et al., Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol, 2012. 69(5): p. 582–93. Bien, C.G., et al., Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain, 2005. 128(Pt 3): p. 454–71. Longaretti, F., et al., Evolution of the EEG in children with Rasmussen’s syndrome. Epilepsia, 2012. 53(9): p. 1539–45. Bien, C.G., et al., Rasmussen encephalitis: incidence and course under randomized therapy with tacrolimus or intravenous immunoglobulins. Epilepsia, 2013. 54(3): p. 543–50. Vining, E.P., et al., Why would you remove half a brain? The outcome of 58 children after hemispherectomy-the Johns Hopkins experience: 1968 to 1996. Pediatrics, 1997. 100(2 Pt 1): p. 163–71. Gaspard, N., et al., New-onset refractory status epilepticus: Etiology, clinical features, and outcome. Neurology, 2015. 85(18): p. 1604–13. Gaspard, N., et al., New-onset refractory status epilepticus (NORSE) and febrile infection-related epilepsy syndrome (FIRES): State of the art and perspectives. Epilepsia, 2018. 59(4): p. 745–752. Kaplan, P.W. and R. Sutter, Electroencephalography of autoimmune limbic encephalopathy. J Clin Neurophysiol, 2013. 30(5): p. 490–504. Schmitt, S.E., et al., Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology, 2012. 79(11): p. 1094–100. Baykan, B., et al., Delta Brush Pattern Is Not Unique to NMDAR Encephalitis: Evaluation of Two Independent Long-Term EEG Cohorts. Clin EEG Neurosci, 2018. 49(4): p. 278–284. Aurangzeb, S., et al., LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure, 2017. 50: p. 14–17. Graus, F., et al., A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol, 2016. 15(4): p. 391–404. Escudero, D., et al., Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology, 2017. 89(14): p. 1471–1475. Dubey, D., et al., The spectrum of autoimmune encephalopathies. J Neuroimmunol, 2015. 287: p. 93–7. Malter, M.P., et al., Suspected new-onset autoimmune temporal lobe epilepsy with amygdala enlargement. Epilepsia, 2016. 57(9): p. 1485–94. Finke, C., et al., Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol, 2013. 74(2): 284–96. Solnes, L.B., et al., Diagnostic Value of (18)F-FDG PET/CT Versus MRI in the Setting of Antibody-Specific Autoimmune Encephalitis. J Nucl Med, 2017. 58(8): p. 1307–1313. Probasco, J.C., et al., Decreased occipital lobe metabolism by FDG-PET/CT: An anti-NMDA receptor encephalitis biomarker. Neurol Neuroimmunol Neuroinflamm, 2018. 5(1): e413. Ohta, K., et al., Perfusion IMP-SPECT shows reversible abnormalities in GABA(B) receptor antibody associated encephalitis with normal MRI. Brain Behav, 2011. 1(2): 70–2. Guerin, J., et al., Autoimmune epilepsy: findings on MRI and FDG-PET. Br J Radiol, 2019. 92(1093): p. 20170869. Heine, J., et al., Imaging of autoimmune encephalitis--Relevance for clinical practice and hippocampal function. Neuroscience, 2015. 309: p. 68–83. Irani, S.R. and A. Vincent, Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes. Handb Clin Neurol, 2016. 133: p. 185–97. Flanagan, E.P., et al., Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm, 2015. 2(6): p. e161. Shin, Y.W., et al., VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol, 2013. 265(1–2): p. 75–81. Fredriksen, J.R., et al., MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy. Neuroradiology, 2018. 60(3): p. 239–245. Spatola, M., et al., Investigations in GABAA receptor antibody-associated encephalitis. Neurology, 2017. 88(11): 1012–1020. Dogan Onugoren, M., et al., Limbic encephalitis due to GABAB and AMPA receptor antibodies: a case series. J Neurol Neurosurg Psychiatry, 2015. 86(9): 965–72. Hoftberger, R., et al., Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology, 2013. 81(17): p. 1500–6. Do, L.D., et al., Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology, 2017. 88(6): 514–524. Pittock, S.J. and J. Palace, Paraneoplastic and idiopathic autoimmune neurologic disorders: approach to diagnosis and treatment: Handb Clin Neurol, 2016. 133: p. 165–83. Irani, S.R., et al., Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain, 2013. 136(Pt 10): p. 3151–62. Byun, J.I., et al., Effect of Immunotherapy on Seizure Outcome in Patients with Autoimmune Encephalitis: A Prospective Observational Registry Study. PLoS One, 2016. 11(1): p. e0146455. Thompson, J., et al., The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain, 2018. 141(2): 348–356. Scheibe, F., et al., Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology, 2017. 88(4): p. 366–370. Kishimoto, T., IL-6: from its discovery to clinical applications. Int Immunol, 2010. 22(5): p. 347–52. Abbott, B.P., et al., GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys Rev Lett, 2017. 118(22): p. 221101. Jun, J.S., et al., Tocilizumab treatment for new onset refractory status epilepticus. Ann Neurol, 2018. 84(6): p. 940–945. Lee, W.J., et al., Tocilizumab in Autoimmune Encephalitis Refractory to Rituximab: An Institutional Cohort Study. Neurotherapeutics, 2016. 13(4): p. 824–832. Abou-Khalil, B.W., Antiepileptic Drugs. Continuum (Minneap Minn), 2016. 22(1 Epilepsy): p. 132–56. Feyissa, A.M., A.S. Lopez Chiriboga, and J.W. Britton, Antiepileptic drug therapy in patients with autoimmune epilepsy. Neurol Neuroimmunol Neuroinflamm, 2017. 4(4): p. e353. Beghi, E. and S. Shorvon, Antiepileptic drugs and the immune system. Epilepsia, 2011. 52 Suppl 3: p. 40–4. Carreno, M., et al., Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res, 2017. 129: p. 101–105. Malter, M.P., et al., Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure, 2015. 30: p. 57–63. Gadoth, A., et al., Elevated LGI1-IgG CSF index predicts worse neurological outcome. Ann Clin Transl Neurol, 2018. 5(5): p. 646–650. Balu, R., et al., A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology, 2019. 92(3): p. e244-e252.