Autocatalytic recombination systems: A reaction network perspective

Mathematical Biosciences - Tập 345 - Trang 108784 - 2022
Gheorghe Craciun1, Abhishek Deshpande2, Badal Joshi3, Polly Y. Yu2
1Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison, United States of America
2Department of Mathematics, University of Wisconsin-Madison, United States of America
3Department of Mathematics, California State University San Marcos, United States of America

Tài liệu tham khảo

Alberts, 2002 Kauffman, 1986, Autocatalytic sets of proteins, J. Theoret. Biol., 119, 1, 10.1016/S0022-5193(86)80047-9 Kauffman, 1993 Robertson, 2000, Minimal self-replicating systems, Chem. Soc. Rev., 29, 141, 10.1039/a803602k Eilertsen, 2018, A theory of reactant-stationary kinetics for a mechanism of zymogen activation, Biophys. Chem., 242, 34, 10.1016/j.bpc.2018.08.003 Tyczynska, 2020 Eigen, 1971, Self-organization of matter and the evolution of biological macromolecules, Naturwissenschaften, 58, 465, 10.1007/BF00623322 Eigen, 1977, A principle of natural self-organization, Naturwissenschaften, 64, 541, 10.1007/BF00450633 Eigen, 1982, Stages of emerging life — Five principles of early organization, J. Mol. Evol., 19, 47, 10.1007/BF02100223 Schuster, 1983, Replicator dynamics, J. Theoret. Biol., 100, 533, 10.1016/0022-5193(83)90445-9 Hofbauer, 1998 Joshi, 2021, Autocatalytic networks: An intimate relation between network topology and dynamics, SIAM J. Appl. Math., 81, 1623, 10.1137/20M1342720 Hofbauer, 1981, A general cooperation theorem for hypercycles, Mon.hefte Math., 91, 233, 10.1007/BF01301790 Schuster, 1978, Dynamical systems under constant organization I. Topological analysis of a family of non-linear differential equations — a model for catalytic hypercycles, Bull. Math. Biol., 40, 743 Hofbauer, 1980, Dynamical systems under constant organization II: Homogeneous growth functions of degree p=2, SIAM J. Appl. Math., 38, 282, 10.1137/0138025 Schuster, 1979, Dynamical systems under constant organization. III. Cooperative and competitive behavior of hypercycles, J. Differ. Equ., 32, 357, 10.1016/0022-0396(79)90039-1 Hofbauer, 1984, A difference equation model for the hypercycle, SIAM J. Appl. Math., 44, 762, 10.1137/0144054 Craciun, 2013, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73, 305, 10.1137/100812355 Pantea, 2012, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44, 1636, 10.1137/110840509 Anderson, 2011, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71, 1487, 10.1137/11082631X Gopalkrishnan, 2014, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13, 758, 10.1137/130928170 Craciun, 2009, Toric dynamical systems, J. Symb. Comput., 44, 1551, 10.1016/j.jsc.2008.08.006 Gunawardena, 2003 Feinberg, 1989, Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity, Chem. Eng. Sci., 44, 1819, 10.1016/0009-2509(89)85124-3 Feinberg, 1987, Chemical reaction network structure and the stability of complex isothermal reactors — I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42, 2229, 10.1016/0009-2509(87)80099-4 Feinberg, 1988, Chemical reaction network structure and the stability of complex isothermal reactors–II. Multiple steady states for networks of deficiency one, Chem. Eng. Sci., 43, 1, 10.1016/0009-2509(88)87122-7 Feinberg, 1972, On chemical kinetics of a certain class, Arch. Ration. Mech. Anal., 46, 1, 10.1007/BF00251866 Craciun, 2015 Craciun, 2019, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3, 87 Craciun, 2019 Feinberg, 2019 Hárs, 1981, On the inverse problem of reaction kinetics, 363 Craciun, 2020, An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems, SIAM J. Appl. Math., 80, 183, 10.1137/19M1244494 Hordijk, 2004, Detecting autocatalytic, self-sustaining sets in chemical reaction systems, J. Theoret. Biol., 227, 451, 10.1016/j.jtbi.2003.11.020 Hordijk, 2011, Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems, Int. J. Mol. Sci., 12, 3085, 10.3390/ijms12053085 Kauffman, 1996 Hordijk, 2010, Autocatalytic sets and the origin of life, Entropy, 12, 1733, 10.3390/e12071733 Hofbauer, 1988 Eigen, 2012 Hofbauer, 1991, Stable periodic solutions for the hypercycle system, J. Dynam. Differential Equations, 3, 423, 10.1007/BF01049740 Kuehn, 2015 Rieger, 2012 Stadler, 1993, Random catalytic reaction networks, Physica D, 63, 378, 10.1016/0167-2789(93)90118-K Sung, 2006, Mechanism of homologous recombination: mediators and helicases take on regulatory functions, Nat. Rev. Mol., 7, 739, 10.1038/nrm2008 Vasquez, 2001, Manipulating the mammalian genome by homologous recombination, Proc. Natl. Acad. Sci. USA, 98, 8403, 10.1073/pnas.111009698 Capecchi, 2005, Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century, Nat. Rev. Genet., 6, 507, 10.1038/nrg1619 Capecchi, 1989, Altering the genome by homologous recombination, Science, 244, 1288, 10.1126/science.2660260 Gerlai, 2016, Gene targeting using homologous recombination in embryonic stem cells: the future for behavior genetics?, Front. Genet., 7, 43, 10.3389/fgene.2016.00043 Wilson, 2006, Nonhomologous end-joining: mechanisms, conservation and relationship to illegitimate recombination, 487 Rockafellar, 2015 Boros, 2020, Permanence of weakly reversible mass-action systems with a single linkage class, SIAM J. Appl. Dyn. Syst., 19, 352, 10.1137/19M1248431 Hordijk, 2012, Predicting template-based catalysis rates in a simple catalytic reaction model, J. Theoret. Biol., 295, 132, 10.1016/j.jtbi.2011.11.024 Deshpande, 2014, Autocatalysis in reaction networks, Bull. Math. Biol., 76, 2570, 10.1007/s11538-014-0024-x Qian, 2011, A simple DNA gate motif for synthesizing large-scale circuits, J. R. Soc. Interface, 8, 1281, 10.1098/rsif.2010.0729 Phillips, 2009, A programming language for composable DNA circuits, J. R. Soc. Interface, 6, S419, 10.1098/rsif.2009.0072.focus Soloveichik, 2010, DNA as a universal substrate for chemical kinetics, Proc. Natl. Acad. Sci. USA, 107, 5393, 10.1073/pnas.0909380107 Angeli, 2007, A Petri net approach to persistence analysis in chemical reaction networks, 181