Auto-scaling for real-time stream analytics on HPC cloud

Springer Science and Business Media LLC - Tập 13 - Trang 169-183 - 2019
Yingchao Cheng1,2, Zhifeng Hao1,3, Ruichu Cai1
1School of Computers, Guangdong University of Technology, Guangzhou, China
2Department of Statistics, Texas A&M University, College Station, USA
3School of Mathematics and Big Data, Foshan University, Foshan, China

Tóm tắt

There are very-high-volume streaming data in the cyber world today. With the popularization of 5G technology, the streaming Big Data grows larger. Moreover, it needs to be analyzed in real time. We propose a new strategy HPC2-ARS to enable streaming services on HPC platforms. This strategy includes a three-tier high-performance cloud computing (HPC2) platform and a novel autonomous resource-scheduling (ARS) framework. The HPC2 platform is our de facto base platform for research on streaming service. It has three components: Tianhe-2 high-performance computer, custom OpenStack cloud computing software, and Apache Storm stream data analytic system. Our ARS framework ensures real-time response on unpredictable and fluctuating stream, especially streaming Big Data in the 5G era. This strategy addresses an essential problem in the convergence of HPC Cloud, Big Data, and streaming service. Specifically, Our ARS framework provides theoretical and practical solutions for resource provisioning, placement, and scheduling optimization. Extensive experiments have validated the effectiveness of the proposed strategy.

Tài liệu tham khảo

Padgavankar MH, Gupta SR (2014) Big data storage and challenges. Int J Comput Sci Inf Technol 5(2):2218–2223 Chen CLP, Zhang CY (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci 275(11):314–347 Fu TZJ, Ding J, Ma RTB, Winslett M, Yang Y, Zhang Z (2015) DRS: dynamic resource scheduling for real-time analytic over fast streams. In: IEEE, international conference on distributed computing systems, vol 690. IEEE, pp 411–420 Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in Big Data analytic. J Parallel Distrib Comput 74(7):2561–2573 Khan M, Li M, Ashton P, Taylor G, Liu J (2014). Big Data analytic on PMU measurements. In: International conference on fuzzy systems and knowledge discovery. IEEE. (IEEE Transactions) Ramírez-Gallego S, Krawczyk B, García S, Woźniak M, Herrera F (2017) A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239:39–57 Jin CQ, Qian WN, Zhou AY (2004) Analysis and management of streaming data: a survey. J Softw 15(8):1172–1181 Liao X, Xiao L, Yang C, Lu Y (2014) Milkyway-2 supercomputer: system and application. Front Comput Sci 8(3):345–356 Assunção MD, Calheiros RN, Bianchi S, Netto MA, Buyya R (2015) Big Data computing and clouds: trends and future directions. J Parallel Distrib Comput 79:3–15 Rehr JJ, Vila FD, Gardner JP, Svec L, Prange M (2010) Scientific computing in the cloud. Comput Sci Eng 12(3):34–43 Kingsbury BK (1986) The network queueing system Tech. Rep. NASA-CR-177433, NASA Henderson RL (1995) Job scheduling under the portable batch system. In: Workshop on job scheduling strategies for parallel processing. Springer, Berlin, Heidelberg, pp 279–294 Slapničar P, Seitz U, Bode A, Zoraja I (2001) Resource management in message passing environments. J Comput Inf Technol 9(1):43–54 Litzkow MJ, Livny M, Mutka MW (1988) Condor-a hunter of idle workstations. In: 8th international conference on distributed computing systems, 1988. IEEE, pp 104–111 Capit N, Da Costa G, Georgiou Y, Huard G, Martin C, Mounié G et al (2005) A batch scheduler with high level components. In: IEEE international symposium on cluster computing and the grid, 2005. CCGrid 2005, vol 2. IEEE, pp 776–783 Zhou S, Zheng X, Wang J, Delisle P (1993) Utopia: a load sharing facility for large, heterogeneous distributed computer systems. Softw Pract Exp 23(12):1305–1336 Newhouse T, Pasquale J (2006) ALPS: an application-level proportional-share scheduler. In: HPDC, pp 279–290 Yoo AB, Jette, MA, Grondona M (2003) Slurm: simple linux utility for resource management. In: Workshop on job scheduling strategies for parallel processing. Springer, Berlin, Heidelberg, pp. 44–60 Chen M, Mao S, Liu Y (2014) Big data: a survey. Mobile Netw Appl 19(2):171–209 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113 Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J (2013) Omega: flexible, scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM European conference on computer systems. ACM, pp 351–364 Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J (2015) Large-scale cluster management at Google with Borg. In: Proceedings of the tenth European conference on computer systems. ACM, p 18 Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH et al (2011) Mesos: a platform for fine-grained resource sharing in the data center. In: Proceedings of the 8th USENIX conference on Networked systems design and implementation, vol 11, pp 295–308 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S. Konar M, Evans R et al (2013) Apache Hadoop YARN: yet another resource negotiator. In: Symposium on cloud computing. ACM, pp 1–16 Lin Y, Agrawal D, Chen C, Ooi BC, Wu S (2011) Llama: leveraging columnar storage for scalable join processing in the MapReduce framework. In: Proceedings of the 2011 ACM SIGMOD international conference on management of data. ACM, pp 961–972 Saha B, Shah H, Seth S, Vijayaraghavan G, Murthy A, Curino C (2015) Apache tez: a unifying framework for modeling and building data processing applications. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 1357–1369 Bernstein D (2014) Containers and cloud: from lxc to docker to kubernetes. IEEE Cloud Comput 1(3):81–84 Dittrich J, Quiané-Ruiz JA (2012) Efficient big data processing in Hadoop MapReduce. Proc VLDB Endow 5(12):2014–2015 Bird SL, Smith BJ (2011) PACORA: performance aware convex optimization for resource allocation. In: Proceedings of the 3rd USENIX workshop on hot topics in parallelism Ousterhout K, Wendell P, Zaharia M, Stoica I (2013) Sparrow: distributed, low latency scheduling. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles. ACM, pp 69–84 Hirzel M, Soulé R, Schneider S, Gedik B, Grimm R (2014) A catalog of stream processing optimizations. ACM Comput Surv (CSUR) 46(4):46 Abadi DJ, Carney D, Çetintemel U, Cherniack M, Convey C, Lee S et al (2003) Aurora: a new model and architecture for data stream management. VLDB J 12(2):120–139 Abadi DJ, Ahmad Y, Balazinskaur M, Cetintemel U, Cherniack M, Hwang J-H, Lindner W, Maskey AS, Rasin A, Ryvkina E, Tatbul N, Xing Y, Zdonik S (2005) The design of the borealis stream processing engine. In: 2nd biennial conference on innovative data systems research (CIDR’05) Hormati AH, Choi Y, Woh M, Kudlur M, Rabbah R, Mudge T, Mahlke S (2010) MacroSS: macro-SIMDization of streaming applications. In: ACM SIGARCH computer architecture news, vol 38, no. 1. ACM, pp 285–296 Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: a language for streaming applications. In: International conference on compiler construction. Springer, Berlin, Heidelberg, pp 179–196 Welsh M, Culler D, Brewer E (2001) SEDA: an architecture for well-conditioned, scalable internet services. In: ACM SIGOPS operating systems review, vol 35, no. 5. ACM, pp 230–243 Arpaci-Dusseau RH, Anderson E, Treuhaft N, Culler DE, Hellerstein JM, Patterson D, Yelick K (1999) Cluster I/O with river: making the fast case common. In: Proceedings of the sixth workshop on I/O in parallel and distributed systems. ACM, pp 10–22 Wolf J, Bansal N, Hildrum K, Parekh S, Rajan D, Wagle R et al (2008) SODA: an optimizing scheduler for large-scale stream-based distributed computer systems. In: Proceedings of the 9th ACM/IFIP/USENIX international conference on middleware. Springer, New York, pp 306–325 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A et al (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65 Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015) Apache flink: stream and batch processing in a single engine. In: Bulletin of the IEEE computer society technical committee on data engineering, Vol 36 Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S et al (2014) Storm@ twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data. ACM, pp 147–156 Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S et al (2015) Twitter heron: stream processing at scale. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 239–250 Bitran GR, Morabito R (1996) State-of-the-art survey: open queueing networks: optimization and performance evaluation models for discrete manufacturing systems. Prod Oper Manag 5(2):163–193 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A et al (2010) A view of cloud computing. Commun ACM 53(4):50–58 Mathis M, Mahdavi J, Floyd S, Romanow A (1996) TCP selective acknowledgment options (No. RFC 2018) Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639 “Sahara”. wiki.openstack.org. Retrieved 24 September 2014 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R et al (2013) Apache hadoop yarn: yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing. ACM, p 5 Pang Z, Xie M, Zhang J, Zheng Y, Wang G, Dong D, Suo G (2014) The TH express high-performance interconnect networks. Front Comput Sci 8(3):357–366 Sefraoui O, Aissaoui M, Eleuldj M (2012) OpenStack: toward an open-source solution for cloud computing. Int J Comput Appl 55(3):38–42 Nguyen DT, Jung JE (2017) Real-time event detection for online behavioral analytic of big social data. Future Gen Comput Syst 66:137–145 Aiello LM, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R et al (2013) Sensing trending topics in twitter. IEEE Trans Multimed 15(6):1268–1282 Liu Y, Wang J, Li Z, Li H (2017) Efficient logo recognition by local feature groups. Multimed Syst 23(3):1–9 Romberg S, Pueyo LG, Lienhart R, Zwol RV (2011) Scalable logo recognition in real-world images. In: ACM international conference on multimedia retrieval. ACM, pp 25 Yun U (2007) Mining lossless closed frequent patterns with weight constraints. Knowl-Based Syst 20(1):86–97 Chen Y, Tu L (2007) Density-based clustering for real-time stream data. In: ACM SIGKDD international conference on knowledge discovery and data mining, San Jose, California, USA, August. DBLP, pp 133–142 Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of VLDB, pp 81–92