Auswertung von elektromyographischen Signalen zur Steuerung von Exoskeletten

Informatik Forschung und Entwicklung - Tập 22 - Trang 173-183 - 2008
Christian Fleischer1, Armin Zimmermann1
1Institut für Technische Informatik und Mikroelektronik (Sekr. EN 10), Technische Universität Berlin, Berlin, Deutschland

Tóm tắt

Diese Arbeit stellt ein Modell und ein System zur Steuerung von Exoskeletten mit Hilfe von elektrischen Signalen vor, die an den Muskeln des Benutzers gemessen werden. Anhand dieser Signale wird der eigene Drehmomentbeitrag des Benutzer zur gewünschten Bewegung abgeschätzt, und ein einstellbarer Faktor bestimmt das vom Exoskelett hinzugefügte Drehmoment in Bezug auf den Beitrag des Benutzers. Die Signale werden durch ein komplexes biomechanisches Modell ausgewertet.

Tài liệu tham khảo

Delsys Inc., http://www.delsys.com, 8.2.2008 disynet, http://www.sensoren.de/, 8.2.2008 Maxon Motor, http://www.maxonmotor.co.uk/, 8.2.2008 RealTime Application Interface (RTAI), https://www.rtai.org/, 8.2.2008 Royal Philips Electronics, http://www.philips.com/, 8.2.2008 An K, Takahashi K, Harrigan T, Chao E (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106(3):280–2 Basmajian JV, De Luca CJ (1985) Muscles Alive: Their Functions Revealed by Electromyography. Williams&Wilkins, Baltimore Buchanan T, Lloyd D, Manal K, Besier T (2004) Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command. J Appl Biomech 20:367–395 Delp S, Loan J, Hoy M, Zajac F, Topp E, Rosen J (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37(8):757–767 Fasoli S, Krebs H, Stein J, Frontera W, Hogan N (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84(4):477–482 Ferris D (2005) Powered Lower Limb Orthoses for Gait Rehabilitation. Top Spinal Cord Injury Rehabil 11(2):34–49 Ferris D, Czerniecki J, Hannaford B (2005) An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles. J Appl Biomech 21(2):189–197 Fleischer C, Hommel G (2007) Calibration of an EMG-Based Body Model with six Muscles to control a Leg Exoskeleton. In: IEEE International Conference on Robotics and Automation, pp 2514–2519 Hill A (1938) The Heat of Shortening and the Dynamic Constants of Muscle. Proc R Soc London Ser B, Biol Sci 126(843):136–195 Hussein S, Granat M (2002) Intention detection using a neuro-fuzzy EMG classifier. IEEE Eng Med Biol Mag 21(6):123–129 Ito K, Tsuji T, Kato A, Ito M (1992) EMG Pattern Classification for a Prosthetic Forearm with Three Degrees of Freedom. Proceeding of IEEE International Workshop on Robot and Human Communication 92 (Tokyo) pp 69–74 Kawai S, Yokoi H, Naruse K, Kakazu Y (2004) Study for control of a power assist device. Development of an EMG based controller considering a human model. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems 3 Kawamoto H, Sankai Y (2002) Comfortable power assist control method for walking aid by HAL-3. Systems, Man and Cybernetics, 2002 IEEE International Conference on 4:6 Kawamoto H, Sankai Y (2004) Power assist method based on phase sequence driven by interaction between human and robot suit. 13th IEEE International Workshop on Robot and Human Interactive Communication, 2004, pp 491–496 Kazerooni H (2005) Exoskeletons for human power augmentation. Intelligent Robots and Systems, 2005(IROS 2005) 2005 IEEE/RSJ International Conference on pp 3459–3464 Kazerooni H, Steger R (2006) The Berkeley Lower Extremity Exoskeleton. J Dyn Syst Meas Control 128:14–25 Lee S, Sankai Y (2002) Power assist control for leg with HAL-3 based on virtual torque and impedance adjustment. Systems, Man and Cybernetics, 2002 IEEE International Conference on 4:6 Liu X, Low K, Yu H (2004) Development of a lower extremity exoskeleton for human performance enhancement. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems 4:3889–3894 Lunenburger L, Colombo G, Riener R, Dietz V (2005) Clinical Assessments Performed During Robotic Rehabilitation by the Gait Training Robot Lokomat. Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on pp 345–348 Potvin J, Norman R, McGill S (1996) Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur J Appl Physiol Occup Physiol 74:119–132 Pratt J, Krupp B, Morse C, Collins S (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. Robotics and Automation, 2004 Proceedings ICRA’04 2004 IEEE International Conference on 3:2430–2435 Rosen J, Brand M, Fuchs MB, Arcan M (2001) A myosignal-based powered exoskeleton system. In: IEEE Transactions on Systems, Man, and Cybernetics, vol 31 Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J (2007) Gait rehabilitation machines based on programmable footplates. J NeuroEng Rehabil 4:2 Scott S, Winter D (1991) A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. J Biomech 24(2):163–167 Uhlmann K (1996) Lehrbuch der Anatomie des Bewegungsapparates. UTB für Wissenschaft Winters J (1990) Hill-based muscle models: a systems engineering perspective. Multiple Muscle Systems: Biomechanics and Movement Organization pp 69–93 Zardoshti-Kermani M, Wheeler B, Badie K, Hashemi R (1995) EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabil Eng, [see also IEEE Trans on Neural Syst Rehabil] 3(4):324–333