Hình ảnh MT 3D của một vùng biến dạng trong lục địa, Tỉnh Musgrave, Trung Úc

Earth, Planets and Space - Tập 72 - Trang 1-21 - 2020
Stephan Thiel1,2, Bruce R. Goleby3, Mark J. Pawley1, Graham Heinson2
1Department for Energy and Mining, Geological Survey of South Australia, Adelaide, Australia
2School of Physical Sciences, The University of Adelaide, Adelaide, Australia
3OPM Consulting Pty Ltd, Gowrie, Australia

Tóm tắt

Tỉnh Musgrave ở Trung Úc, nằm giao giữa các thềm cạn Nam, Bắc và Tây Úc, đã trải qua và tiếp tục giữ lại chứng cứ về các quá trình kiến tạo-nham thạch to lớn diễn ra trên toàn bộ lớp vỏ. Khu vực này nổi tiếng với một số bất thường vật lý địa lý lớn liên quan đến sự dịch chuyển Moho đáng kể lên tới 15 km, kết quả của việc tái xử lý trong thềm cạn nhiều lần kể từ thời kỳ Neoproterozoic. Dữ liệu điện từ magnetotelluric (MT) mới đã được thu thập trên toàn bộ Tỉnh Musgrave ở Tây Úc và Nam Úc như một phần của Dự án Kiến trúc Litospher Úc (AusLAMP). Khoảng cách giữa các trạm là $$\sim 50\,\hbox{km}$$ giữa 96 điểm trên diện tích 500 × 700 km. Dữ liệu trở kháng MT dài hạn và dữ liệu với kiểu định (tipper) trên băng thông từ 8 giây đến 10,000 giây đã được lật ngược bằng cách sử dụng một thuật toán đảo ngược 3D mịn. Mô hình 3D cho thấy hai xu hướng trở kháng chủ yếu. Có các dẫn điện manti sâu ( $$>65\,\hbox{km}$$ ) theo hướng bắc-nam mà chúng tôi suy diễn liên quan đến các đá arc có xu hướng bắc từ thời kỳ Palaeo- đến Mesoproterozoic, đã trải qua biến chất nhiệt độ cực cao và sự magma lan tỏa trong thời kỳ Orogeny Musgravian Mesoproterozoic. Những dẫn điện này được bảo tồn trong lớp vỏ phía nam Tỉnh Musgrave. Manti trên cũng chứa một khu vực có trở kháng cục bộ, có thể đại diện cho sự phát sinh của magma mafic- đến ultramafic trong sự kiện Giles c. 1090–1040 Ma. Lớp vỏ ( $$<65\,\hbox{km}$$ độ sâu) chứa các dẫn điện lớp vỏ mạnh theo hướng đông-tây, được giải thích là phản ánh cấu trúc có hướng đông-tây đã bắt đầu trong sự kiện Giles c. 1090–1040 Ma và phủ lên các bất thường manti có hướng bắc-nam cũ. Những dẫn điện lớp vỏ E–W này trùng với các bất thường từ trường đại diện cho các cấu trúc quy mô lớp vỏ, và các bất thường trọng lực cao liên quan đến sự dịch chuyển Moho đáng kể do sự kích hoạt thêm trong các sự kiện Petermann c. 630–520 Ma và Orogenies Alice Springs c. 450–300 Ma.

Từ khóa

#Musgrave Province #điện từ magnetotelluric #lớp vỏ trái đất #sự kiện Giles #biến đổi cấu trúc.

Tài liệu tham khảo

Aitken A, Betts P, Young D, Blankenship D, Roberts J, Siegert M (2016) The Australo-Antarctic Columbia to Gondwana transition. Gondwana Res 29:136–152. https://doi.org/10.1016/j.gr.2014.10.019 Aitken A, Dentith M, Evans S, Gallardo L, Joly A, Thiel S, Smithies R, Tyler I (2013) Imaging crustal structure in the west Musgrave Province from magnetotelluric and potential field data. Technical Report Report 114. Geological Survey of Western Australia Aitken ARA, Betts PG (2008) High-resolution aeromagnetic data over central Australia assist Grenville-era (1300–1100 ma) Rodinia reconstructions. Geophys Res Lett. https://doi.org/10.1029/2007gl031563 Aitken ARA, Betts PG, Weinberg RF, Gray D (2009) Constrained potential field modeling of the crustal architecture of the musgrave province in central Australia: evidence for lithospheric strengthening due to crust-mantle boundary uplift. J Geophys Res. https://doi.org/10.1029/2008JB006194 Alghamdi AH, Aitken AR, Dentith MC (2018) The deep crustal structure of the warakurna lip, and insights on proterozoic lip processes and mineralisation. Gondwana Res 56:1–11 Bedrosian P (2007) MT+, integrating magnetotellurics to determine earth structure, physical state, and processes. Surv Geophys 28:121–167 Betts PG, Giles D (2006) The 1800–1100 Ma tectonic evolution of Australia. Precambrian Res 144:92–125 Bibby HM, Caldwell TG, Brown C (2005) Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int 163:915–930. https://doi.org/10.1111/j.1365-246X.2005.02779.x Booker J (2014) The Magnetotelluric Phase Tensor: A Critical Review. Surveys in Geophysics 35:7–40 Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18:605–635 Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x/pdf Camacho A, Fanning C (1995) Some isotopic constraints on the evolution of the granulite and upper amphibolite facies terranes in the eastern Musgrave Block, central Australia. Precambrian Res 71:155–181. https://doi.org/10.1016/0301-9268(94)00060-5 Camacho A, McDougall I (2000) Intracratonic, strike-slip partitioned transpression and the formation and exhumation of eclogite facies rocks: An example from the musgrave block, central australia. Tectonics 19:978–996. https://doi.org/10.1029/1999tc001151 Camacho A, Simons B, Schmidt PW (1991) Geological and palaeomagnetic significance of the kulgera dyke swarm, musgrave block, NT, australia. Geophys J Int 107:37–45. https://doi.org/10.1111/j.1365-246x.1991.tb01154.x Chave AD (2014) Magnetotelluric data, stable distributions and impropriety: an existential combination. Geophys J Int 198:622–636. https://doi.org/10.1093/gji/ggu121 Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press, Cambridge Chave AD, Thomson DJ (2004) Bounded influence magnetotelluric response function estimation. Geophys J Int 157:988–1006 Clark D, Hensen B, Kinny P (2000) Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia. Precambrian Res 102:155–183. https://doi.org/10.1016/s0301-9268(00)00063-2 Clitheroe G, Gudmundsson O, Kennett BLN (2000) The crustal thickness of Australia. J Geophys Res 105:13697–13713. https://doi.org/10.1029/1999jb900317 Collins W, Shaw R (1995) Geochronological constraints on orogenic events in the Arunta Inlier: a review. Precambrian Res 71:315–346. https://doi.org/10.1016/0301-9268(94)00067-2 de Gromard RQ, Kirkland CL, Howard HM, Wingate MT, Jourdan F, McInnes BI, Danišík M, Evans NJ, McDonald BJ, Smithies RH (2019) When will it end? long-lived intracontinental reactivation in central australia. Geosci Front 10:149–164. https://doi.org/10.1016/j.gsf.2018.09.003 Drexel J, Preiss W, Parker A (1993) Geological framework, vol 1. Geological Survey of South Australia, The Precambrian Duan J, Milligan P, Fomin T (2013) Electrical resistivity distribution from magnetotelluric data in the Yilgarn Craton, western Officer Basin and western Musgrave Province. In: Neumann N (ed) Yilgarn Craton-Officer Basin-Musgrave Province Seismic and MT Workshop, vol 28. Geoscience Australia, Canberra Duan J, Milligan P, Nakamura A (2010) Magnetotelluric survey along the GOMA deep seismic reflection transect in the northern Gawler Craton to Musgrave Province, South Australia. In: Korsch R, Kositcin N (eds), GOMA (Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin) Seismic and MT Workshop 2010, volume 2010/039. Geoscience Australia, Record, pp 7–15 Dutch R (2018) Coompana province geochemistry and petrogenesis. In: Dutch R, Wise T, Pawley M, Petts A (eds) Coompana Drilling and Geochemistry Workshop 2018 extended abstracts. Department for Energy and Mining, South Australia, pp 76–101 Dutch R, Reid A, Smithies R, Payne J, Jagodzinski E, Kirkland C, Pawley M, Spaggiari C, Preiss W (2016) Is Southern Australia bent?; recognition of a contiguous Palaeoproterozoic magmatic arc along the western margin of the Mawson Continent. In: Australian Earth Science Convention: Uncover Earth’s Past to Discover Our Future, Adelaide, SA, Australia, p. 120 Edgoose C, Scrimgeour I, Close D (2004) Geology of the Musgrave Block, Northern Territory. Technical Report NTGS Report 15. Northern Territory Geological Survey Egbert GD, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189:251–267 Evins P, Kirkland C, Wingate M, Smithies R, Howard H, Bodorkos S (2012) Provenance of the 1340-1270 Ma Ramarama Basin in the west Musgrave Province, Central Australia. Technical Report 116. Geological Survey of Western Australia Evins PM, Smithies RH, Howard HM, Kirkland CL, Wingate MT, Bodorkos S (2010) Devil in the detail: the 1150–1000 Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia. Precambrian Res 183:572–588. https://doi.org/10.1016/j.precamres.2010.02.011 Fichtner A, Kennett BL, Igel H, Bunge HP (2010) Full waveform tomography for radially anisotropic structure: new insights into present and past states of the australasian upper mantle. Earth Planet Sci Lett 290: 270–280. http://www.sciencedirect.com/science/article/B6V61-4Y5H64W-1/2/760f125e98261617ed23a1273d526be8 Fishwick S, Reading A (2008) Anomalous lithosphere beneath the Proterozoic of western and central Australia: A record of continental collision and intraplate deformation?. Precambrian Research 166:111–121. http://www.sciencedirect.com/science/article/B6VBP-4SH6BD6-1/2/7e191536ae4daa56311d5304807b7f7a Flöttmann T, Hand M, Close D, Edgoose C, Scrimgeour I (2004) Thrust tectonic styles of the intracratonic alice springs and petermann orogenies, central australia. In: Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, pp 551–570. https://doi.org/10.1306/m82813c28 Fusseis F, Regenauer-Lieb K, Liu J, Hough RM, De Carlo F (2009) Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature 459:974–977 Gaul OF, O’Reilly SY, Griffin WL (2003) Lithosphere structure and evolution in southeastern australia. Geological Society of America Special Papers 372:185–202. http://specialpapers.gsapubs.org/content/372/185.abstract, https://doi.org/10.1130/0-8137-2372-8.185 Giles D, Betts PG, Lister GS (2004) 1.8-1.5-Ga links between the north and south Australian cratons and the early-middle proterozoic configuration of Australia. Tectonophysics 380:27–41 Glikson A, Stewart A, Ballhaus C, Clarke G, Feeken E, Leven J, Sheraton J, Sun S (1996) Geology of the western Musgrave Block, central Australia, with particular reference to the mafic-ultramafic Giles Complex. resreport. Australian Geological Survey Organisation. Canberra, Australia Glorie S, Agostino K, Dutch R, Pawley M, Hall J, Danišík M, Evans NJ, Collins AS (2017) Thermal history and differential exhumation across the eastern musgrave province, south australia: Insights from low-temperature thermochronology. Tectonophysics 703–704:23–41. https://doi.org/10.1016/j.tecto.2017.03.003 Glover PWJ (1996) Graphite and electrical conductivity in the lower continental crust: a review. Phys Chem Earth 21:279–287 Goleby BR, Shaw RD, Wright C, Kennett BL, Lambeck K (1989) Geophysical evidence for’thick-skinned’ crustal deformation in central australia. Nature 337:325–330 Goleby BR, Wright C, Collins CDN, Kennett BLN (1988) Seismic reflection and refraction profiling across the Arunta Block and the Ngalia and Amadeus Basins. Aust J Earth Sci 35:275–294. https://doi.org/10.1080/08120098808729447 Gorczyk W, Vogt K (2015) Tectonics and melting in intra-continental settings. Gondwana Res 27:196–208. https://doi.org/10.1016/j.gr.2013.09.021 Gravestock D, Benbow M, Gatehouse C, Krieg G (1995) Eastern officer basin. In: Drexel J, Preiss W (eds) The Geology of South Australia, vol 2. The Phanerozoic, Geological Survey of South Australia, pp 35–41 Griffin WL, Begg GC, O’Reilly SY (2013) Continental-root control on the genesis of magmatic ore deposits. Nat Geosci 6:905–910 Hand M, Sandiford M (1999) Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305:121–140 Heinson G, Didana Y, Soeffky P, Thiel S, Wise T (2018) The crustal geophysical signature of a world-class magmatic mineral system. Sci Rep 8:10608. https://doi.org/10.1038/s41598-018-29016-2 Heise W, Caldwell T, Bibby H, Brown C (2006) Anisotropy and phase splits in magnetotellurics. Phys Earth Planet Interiors 158:107–121 Howard H, Smithies R, Kirkland C, Kelsey D, Aitken A, Wingate M, de Gromard RQ, Spaggiari C, Maier W (2015) The burning heart—the proterozoic geology and geological evolution of the west musgrave region, central australia. Gondwana Res 27:64–94 Howard KE, Hand M, Barovich KM, Payne JL, Belousova EA (2011) U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models. Precambrian Res 184:43–62 Hyndman RD, Shearer PM (1989) Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365 Jagodzinski E, Bodorkos S, Crowley J, Pawley M, Wise T (2018) PACE Copper Coompana Drilling Project: U-Pb dating of basement and cover rocks. Technical Report, Department for Energy and Mining, South Australia, Adelaide Jagodzinski E, Dutch R (2013) SHRIMP U-Pb Geochronology of the Tieyon (5645) 1:100 000 mapsheet. Technical Report, Department for Manufacturing, Innovation, Trade, Resources and Energy, Adelaide, South Australia Jones A, Ledo J, Ferguson I (2005) Electromagnetic images of the Trans-Hudson orogen: the North American Central Plains anomaly revealed. Can J Earth Sci 42:457–478 Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) Modem: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53 Kennett B, Iaffaldano G (2013) Role of lithosphere in intra-continental deformation: Central Australia. Gondwana Res 24:958–968 Kennett BLN, Fichtner A, Fishwick S, Yoshizawa K (2013) Australian seismological reference model (Ausrem): mantle component. Geophys J Int 192:871–887. https://doi.org/10.1093/gji/ggs065 Kirkland C, Smithies R, Spaggiari C, Wingate M, de Gromard RQ, Clark C, Gardiner N, Belousova E (2017) Proterozoic crustal evolution of the eucla basement, australia: Implications for destruction of oceanic crust during emergence of nuna. Lithos 278–281:427–444 Korsch R, Blewett R, Smithies R, Quentin de Gromard R, Howard H, Pawley M, Carr L, Hocking R, Neumann N, Kennett B, Aitken A, Holzschuh J, Duan J, Goodwin J, Jones T, Gessner K, Gorczyk W (2013) Geodynamic implications of the Yilgarn Craton-Officer Basin-Musgrave Province (YOM) deep seismic reflection survey: part of a \(\sim\)1800 km transect across Western Australia from the Pinjarra Orogen to the Musgrave Province. In: Neumann N (ed) Yilgarn Craton-Officer Basin-Musgrave Province Seismic and MT Workshop. Geoscience Australia Korsch R, Goleby B, Leven J, Drummond B (1998) Crustal architecture of central Australia based on deep seismic reflection profiling. Tectonophysics 288:57–69. https://doi.org/10.1016/s0040-1951(97)00283-7 Korsch R, Kositcin N (eds) (2010) South Australian Seismic and MT Workshop 2010, vol 10. Geoscience Australia, Record Lambeck K, Burgess G (1992) Deep crustal structure of the Musgrave Block, central Australia: results from teleseismic travel-time anomalies. Aust J Earth Sci 39:1–19. https://doi.org/10.1080/08120099208727996 Li Y, Yang X, Yu JH, Cai YF (2016) Unusually high electrical conductivity of phlogopite: the possible role of fluorine and geophysical implications. Contribut Mineral Petrol 171:1–11. https://doi.org/10.1007/s00410-016-1252-x Lindsay JF (2002) Supersequences, superbasins, supercontinents—evidence from the neoproterozoic-early palaeozoic basins of central australia. Basin Resarch 14:207–223. https://doi.org/10.1046/j.1365-2117.2002.00170.x Lindsay JF, Leven JH (1996) Evolution of a Neoproterozoic to Palaeozoic intracratonic setting, Officer Basin, South Australia. Basin Res 8:403–424. https://doi.org/10.1046/j.1365-2117.1996.00223.x Major R, Conor C (1993) The geology of South Australia. In: Preiss W, Parker A, Drexel J (eds) Musgrave block. Geological Survey of South Australia, Australia, pp 156–167 Mawby J, Hand M, Foden J (1999) Sm-nd evidence for high-grade ordovician metamorphism in the arunta block, central australia. J Metamorphic Geol 17:653–668. https://doi.org/10.1046/j.1525-1314.1999.00224.x Meqbel NM, Egbert GD, Wannamaker PE, Kelbert A, Schultz A (2014) Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet Sci Lett 402:290–304 Neumann N (2013) Yilgarn Craton-Officer Basin-Musgrave Province Seismic and MT Workshop. Technical Report Record 2013/28. Geoscience Australia Nover G (2005) Electrical properties of crustal and mantle rocks: a review of laboratory measurements and their explanation. Surv Geophys 26:593–651 O’Reilly S, Griffin W (2010) The continental lithopshere–asthenosphere boundary: can we sample it? Lithos 120:1–13 Parkinson W (1962) The influence of continents and oceans on geomagnetic variations. Geophys J R Astron Soc 6:441–449 Pawley M, Dutch R, Jagodzinski E, Werner M, Hand M (2016) Finding closure: multiple stages of Musgravian-aged deformation in the eastern Musgrave Province. In: 2016 Australian Earth Science Convention: Uncover Earth’s Past to Discover Our Future. Adelaide, South Australia Pawley M, Dutch R, Werner M, Krapf C (2014) Repeated failure: long-lived faults in the eastern musgrave province. MESA Journal Pawley M, Dutch R, Wise T (2018) The coompana province: structural insights and prospectivity. In: Reid A (ed) Geological Survey of South Australia Discovery Day 2018: Presentation abstracts and posters. Department for Energy and Mining, South Australia, pp 19–24 Pollett A, Thiel S, Bendall B, Raimondo T, Hand M (2019) Mapping the Gawler Craton-Musgrave Province interface using integrated heat flow and magnetotellurics. Tectonophysics 756:43–56. https://doi.org/10.1016/j.tecto.2019.02.017 Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35:41–84 Raimondo T, Collins AS, Hand M, Walker-Hallam A, Smithies RH, Evins PM, Howard HM (2010) The anatomy of a deep intracontinental orogen. Tectonics. https://doi.org/10.1029/2009tc002504 Rawlinson N, Salmon M, Kennett B (2014) Transportable seismic array tomography in southeast Australia: illuminating the transition from proterozoic to phanerozoic lithosphere. Lithos 189:65–76 Robertson K, Heinson G, Thiel S (2016) Lithospheric reworking at the Proterozoic-Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth Planet Sci Lett 452:27–35 Robertson K, Thiel S, Meqbel N (2020) Quality over quantity: on workflow and model space exploration of 3D inversion of MT data. Earth Planets Space 72:2. https://doi.org/10.1186/s40623-019-1125-4 Salmon M, Kennett BLN, Saygin E (2013) Australian seismological reference model (ausrem): crustal component. Geophys J Int 192:190–206. arXiv:http://gji.oxfordjournals.org/content/192/1/190.full.pdf+html Sandiford M, Hand M (1998) Controls on the locus of intraplate deformation in central Australia. Earth Planet Sci Lett 162:97–110 Saygin E, Kennett BL (2010) Ambient seismic noise tomography of australian continent. Tectonophysics 481:116–125 http://www.sciencedirect.com/science/article/B6V72-4V1KMKC-1/2/f8ab0c3cfa2d283dd3af65e4a0b91a14 Scrimgeour I, Close D (1999) Regional high-pressure metamorphism during intracratonic deformation: the Petermann Orogeny, central Australia. J Metamorphic Geol 17:557–572. https://doi.org/10.1046/j.1525-1314.1999.00217.x Selway K (2014) On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv Geophys 35:219–257. https://doi.org/10.1007/s10712-013-9235-1 Selway K, Hand M, Payne J, Heinson G, Reid A (2011) Magnetotelluric constraints on the tectonic setting of Grenville-aged orogenesis in central Australia. J Geol Soc 168:251–264 Selway K, Yi J, Karato SI (2014) Water content of the tanzanian lithosphere from magnetotelluric data: Implications for cratonic growth and stability. Earth Planet Sci Lett 388:175–186. https://doi.org/10.1016/j.epsl.2013.11.024 Skirrow RG, van der Wielen SE, Champion DC, Czarnota K, Thiel S (2018) Lithospheric architecture and mantle metasomatism linked to iron oxide cu-au ore formation: Multidisciplinary evidence from the olympic dam region, south australia. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2018gc007561 Smithies R, Kirkland C, Korhonen F, Aitken A, Howard H, Maier W, Wingate M, de Gromard RQ, Gessner K (2015a) The mesoproterozoic thermal evolution of the musgrave province in central australia—plume vs. the geological record. Gondwana Res 27:1419–1429. https://doi.org/10.1016/j.gr.2013.12.014 Smithies R, Spaggiari C, Kirkland C, Wingate M, England R (2015b) Forrest zone: geochemistry and petrogenesis. In: Spaggiari C, Smithies R (eds), Eucla basement stratigraphic drilling results release workshop: extended abstracts. Geological Survey of Western Australia. pp. 17–28 Smithies R, Spaggiari C, Kirkland C, Wingate M, England R (2015c) Madura province: geochemistry and petrogenesis. In: Spaggiari C, Smithies R (eds), Eucla basement stratigraphic drilling results release workshop: extended abstracts. Geological Survey of Western Australia. pp 41–51 Smithies RH, Howard HM, Evins PM, Kirkland CL, Kelsey DE, Hand M, Wingate MTD, Collins AS, Belousova E (2011) High-temperature granite magmatism, crust-mantle interaction and the mesoproterozoic intracontinental evolution of the musgrave province, central australia. J Petrol 52:931–958. arXiv:http://petrology.oxfordjournals.org/content/52/5/931.full.pdf+html Smithies RH, Howard HM, Kirkland CL, Korhonen FJ, Medlin CC, Maier WD, de Gromard RQ, Wingate MTD (2015d) Piggy-back supervolcanoes-long-lived, voluminous, juvenile rhyolite volcanism in mesoproterozoic central australia. J Petrol 56:735–763. https://doi.org/10.1093/petrology/egv015 Smits R, Collins W, Hand M, Dutch R, Payne J (2014) A Proterozoic Wilson cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia. Geology 42:231–234. http://geology.gsapubs.org/content/42/3/231.abstract, https://doi.org/10.1130/G35112.1. arXiv: http://geology.gsapubs.org/content/42/3/231.full.pdf+html Spaggiari C, Smithies R, Wingate M, Kirkland C, England R (2016) Exposing the Eucla basement: what separates the Albany-Fraser Orogen and the Gawler Craton?. In: GSWA 2016 extended abstracts: promoting the prospectivity of Western Australia. Geological Survey of Western Australi,. pp 36–41 Spratt J, Dentith M, Evans S, Spaggiari C, Gessner K, Tyler I (2014) Magnetotelluric survey across the Albany-Fraser Orogen and adjacent Yilgarn Craton, southwestern Australia. In: Spaggiari C, Tyler I (eds) Albany-Fraser Orogen seismic and MT workshop 2014, extended abstracts. Geological Survey of Western Australia. pp. 7–11 Thiel S (2017) Electromagnetic monitoring of hydraulic fracturing: relationship to permeability, seismicity, and stress. Surv Geophys. https://doi.org/10.1007/s10712-017-9426-2 Thiel S, Dentith M, Wise T, Duan J, Spratt J, Spaggiari C, Pawley JM, Dutch R, Gessner K, Smithies H, Doublier MP (2016a) Linking Western and South Australia - insights from magnetotelluric profiling. In: Australian Earth Sciences Convention - Abstracts. Geological Society of Australia Thiel S, Heinson G (2010) Crustal imaging of a mobile belt using magnetotellurics: an example of the Fowler Domain in South Australia. J Geophys Res 115:B06102 Thiel S, Heinson G (2013) Electrical conductors in Archean mantle—result of plume interaction? Geophys Res Lett 40:2947–2952 Thiel S, Reid A, Heinson G, Robertson K (2018) Mapping and characterizing lithosphere discontinuities: examples of southern Australia using AusLAMP MT. In: 24th EM Induction Workshop, Helsingor, Denmark Thiel S, Soeffky P, Krieger L, Regenauer-Lieb K, Peacock J, Heinson G (2016b) Conductivity response to intraplate deformation: evidence for metamorphic devolatilization and crustal-scale fluid focusing. Geophys Res Lett 43:11236–11244 Unsworth M (2010) Magnetotelluric studies of active continent–continent collisions. Surv Geophys 31:137–161. https://doi.org/10.1007/s10712-009-9086-y Wade B, Barovich K, Hand M, Scrimgeour I, Close D (2006) Evidence for early mesoproterozoic arc magmatism in the Musgrave Block, Central Australia: implications for Proterozoic Crustal Growth and Tectonic Reconstructions of Australia. J Geol 114:43–63 Wade B, Kelsey D, Hand M, Barovich K (2008) The Musgrave Province: stitching North, West and South Australia. Precambrian Res 166:370–386 Walter M, Veevers J, Calver C, Grey K (1995) Neoproterozoic stratigraphy of the centralian superbasin, Australia. Precambrian Res 73:173–195. https://doi.org/10.1016/0301-9268(94)00077-5 Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460:733–736. https://doi.org/10.1038/nature08204 Werner M, Dutch R, Pawley M, Krapf C (2014) Mafic intrusions in the East Musgraves: new geochemical data set available now!. Unlocking SA’s Mineral Wealth Technical Forum. Department for Manufacturing, Innovation, Trade, Resources and Energy, Adelaide, South Australia, pp 37–40 Werner M, Dutch R, Pawley M, Krapf C (2018) Amata Dolerite, Musgrave Province: connections to Neoproterozoic mantle plume magmatism within Rodinia. MESA J 87(34–45):2 Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released, Eos. Trans Am Geophys Union 94:409–410. https://doi.org/10.1002/2013eo450001 Wingate M, Kirkland C, Spaggiari C, Smithies R (2015a) U-Pb geochronology of the Forrest Zone of the Coompana Province. In: Spaggiari C, Smithies R (eds), Eucla basement stratigraphic drilling results release workshop: extended abstracts. Geological Survey of Western Australia. pp 14–16 Wingate M, Kirkland C, Spaggiari C, Smithies R (2015b) U-Pb geochronology of the Madura Province. In: Spaggiari C, Smithies R (eds), Eucla basement stratigraphic drilling results release workshop: extended abstracts. Geological Survey of Western Australia. pp 37–40 Wingate MD, Campbell IH, Compston W, Gibson GM (1998) Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res 87:135–159 Wise T, Thiel S (2020) Proterozoic tectonothermal processes imaged with magnetotellurics and seismic reflection in southern Australia. Geosci Front 11:885–893. https://doi.org/10.1016/j.gsf.2019.09.006 Wong BL, Morrissey LJ, Hand M, Fields CE, Kelsey DE (2015) Grenvillian-aged reworking of late paleoproterozoic crust of the southern north australian craton, central australia: Implications for the assembly of mesoproterozoic australia. Precambrian Res 270:100–123. https://doi.org/10.1016/j.precamres.2015.09.001 Xing Y, Etschmann B, Liu W, Mei Y, Shvarov Y, Testemale D, Tomkins A, Brugger J (2019) The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits. Chem Geol 504:158–176. https://doi.org/10.1016/j.chemgeo.2018.11.008 Yang B, Egbert GD, Kelbert A, Meqbel NM (2015) Three-dimensional electrical resistivity of the north-central USA from earthscope long period magnetotelluric data. Earth Planet Sci Lett 422:87–93. https://doi.org/10.1016/j.epsl.2015.04.006 Zhao J, McCulloch MT, Korsch RJ (1994) Characterisation of a plume-related \(\sim\) 800 ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett 121:349–367. https://doi.org/10.1016/0012-821x(94)90077-9