Augmenting sensitivity of surface plasmon resonance (SPR) sensors with the aid of anti-reflective coatings (ARCs)

Chandreyee Manas Das1,2, Qingling Ouyang1,2, Lixing Kang1,2, Yan Guo1, Xuan-Quyen Dinh1, Philippe Coquet1,3, Ken-Tye Yong1,3
1CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, 637553 Singapore
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
3Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, Université de Lille 1, 59650 Villeneuve d’Ascq, France

Tài liệu tham khảo

Nguyen, 2015, Surface plasmon resonance: a versatile technique for biosensor applications, Sensors, 15, 10481, 10.3390/s150510481 Li, 2015, Plasmon-enhanced optical sensors: a review, Analyst, 140, 386, 10.1039/C4AN01079E Wang, 2016, Microfluidic surface plasmon resonance sensors: from principles to point-of-Care applications, Sensors, 16, 1175, 10.3390/s16081175 Sharma, 2007, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors, J. Appl. Phys., 101, 10.1063/1.2721779 Cinel, 2012, Electron beam lithography designed silver nano- disks used as label free nano-biosensors based on localized surface plasmon resonance, Opt. Express, 20, 2587, 10.1364/OE.20.002587 Firdous, 2018, Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases, Laser Physics Leters, 15 Sadrolhosseini, 2018, Application of surface plasmon resonance sensor with polypyrrole chitosan graphene oxide layer to detect the napropamide, J. Phys. Conf. Ser., 1123 Nonobe, 2016, Application of surface plasmon resonance imaging to monitoring G protein-coupled receptor signaling and its modulation in a heterologous expression system, BMC Biotechnol., 16 Ouyang, 2016, Sensitivity enhancement of transition metal Dichalcogenides/Silicon nanostructure-based surface plasmon resonance biosensor, Scentific Reports, 6 Hiller, 2002, Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nat. Mater., 1, 59, 10.1038/nmat719 Proust, 2016, Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum, Sci. Rep., 6, 24947, 10.1038/srep24947 Ye, 2015, Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching, Sci. Rep., 5, 13023, 10.1038/srep13023 Li, 2018, Durable broadband and omnidirectional ultra-antireflective surfaces, ACS Appl. Mater. Interfaces, 10, 40180, 10.1021/acsami.8b15537 Parker, 2007, Biomimetics of photonic nanostructures, Nat. Nanotechnol., 2, 347, 10.1038/nnano.2007.152 Hedayati, 2016, Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review, Materials, 9, 497, 10.3390/ma9060497 Li, 2013, Synthesis of raspberry-like SiO2−TiO2 nanoparticles toward Antireflective and self cleaning coatings, ACS Appl. Mater. Interfaces, 5, 5282, 10.1021/am401124j Lazarova, 2014, Optical characterization of sol–gel derived Nb2O5 thin films, Opt. Laser Technol., 58, 114, 10.1016/j.optlastec.2013.11.014 Bao, 2017, Hollow rodlike MgF2 with an ultralow refractive index for the preparation of multifunctional antireflective coatings, Langmuir, 33, 6240, 10.1021/acs.langmuir.7b00737 Atta, 2017, Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films, Mater. Today Commun., 13, 112, 10.1016/j.mtcomm.2017.09.004 Bernsmeier, 2014, Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles, ACS Appl. Mater. Interfaces, 6, 19559, 10.1021/am5052685 Maurya, 2015, Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer, Appl. Phys. A, 121, 525, 10.1007/s00339-015-9442-3 Devore, 1951, Refractive indices of rutile and sphalerite, J. Opt. Soc. Am., 41, 416, 10.1364/JOSA.41.000416 Malitson, 1965, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am., 55, 1205, 10.1364/JOSA.55.001205 Gao, 2012, Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering, Opt. Express, 20, 15734, 10.1364/OE.20.015734 Dodge, 1984, Refractive properties of magnesium fluoride, Appl. Opt., 23, 1980, 10.1364/AO.23.001980 Schlachter, 2012, Pushing the detection limits: the evanescent field in surface plasmon resonance and analyte-induced folding observation of long human telomeric repeats, Biosens. Bioelectron., 31, 571, 10.1016/j.bios.2011.11.003 Renger, 2004, Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface, J. Opt. Soc. Am., 21, 1362, 10.1364/JOSAA.21.001362 Ekgasit, 2004, Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies, Anal. Chem., 76, 2210, 10.1021/ac035326f Kaushik, 2019, Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin, Sci. Rep., 9, 6987, 10.1038/s41598-019-43531-w Kaushik, 2019, Rapid detection of Escherichia coli using fiber optic surface plasmon immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets, Biosens. Bioelectron., 126, 501, 10.1016/j.bios.2018.11.006 Nie, 2017, High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide, Anal. Chim. Acta, 993, 55, 10.1016/j.aca.2017.09.015 Kushwaha, 2018, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity, Photonics Nanostruct., 31, 99, 10.1016/j.photonics.2018.06.003 Kushwaha, 2018, Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: a comparative study, Opt. – Int. J. Light Electron. Opt., 172, 697, 10.1016/j.ijleo.2018.07.066 Lin, 2016, Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS2-Au Films, IEEE Photonics J., 8, 10.1109/JPHOT.2016.2631407 Wu, 2017, Sensitivity improved SPR biosensor based on the MoS2/Graphene–Aluminum hybrid structure, J. Light. Technol., 35, 82, 10.1109/JLT.2016.2624982 Nisha, 2019, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni), Opt. Quantum Electron., 51 Liu, 2018, Sensitivity enhancement of surface plasmon resonance biosensor with graphene sandwiched between two metal films, Proc. Of SPIE Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI Sun, 2019, Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers, Appl. Surf. Sci., 475, 342, 10.1016/j.apsusc.2018.12.283 Dai, 2019, Sensitivity Enhancement of a Surface Plasmon Resonance with Tin Selenide (SnSe) Allotropes, Sensors, 19, 173, 10.3390/s19010173 Verma, 2011, Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers, Sens. Actuators B Chem., 160, 623, 10.1016/j.snb.2011.08.039 Zeng, 2015, Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors, Sens. Actuators B Chem., 207, 801, 10.1016/j.snb.2014.10.124